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1. The Navier–Stokes equations and where they come from

Beginnings of theoretical or mathematical considerations in mechanics of fluids:

• Aristoteles (384–322 B.C.)
• Archimedes (287–212 B.C.)
• B. Pascal (1623–1662)

...

Important milestone: discovery of differential and integral calculus in 17th–18th
centuries

• I. Newton (1642–1727)
• D. Bernoulli (1700–1782)
• L. Euler (1707–1783)

...
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Equations of motion of an incompressible fluid

We assume, for simplicity, that the density of the fluid is constant and equal to one.

∂tu + u · ∇u = f + divT (conservation of momentunm), (1.1)
divu = 0 (conservation of mass), (1.2)

where u is the velocity, f is an external body force and T is the stress tensor.

Constitutive equations: provide the dependence of T on other quantities.

They can be deduced from Stokes’ postulates:
a) the stress tensor T depends on velocity and its derivatives only through the rate of

deformation tensor D := (∇u)sym,

b) the stress tensor T does not explicitly depend on position x and time t,

c) the continuum is isotropic, i.e. it contains no preferred directions,

d) if the fluid is at rest then T is a multiple of the identity tensor I by a scalar.

One can show that c) follows from a more general postulate

c’) the way tensor T depends on tensor D is frame indifferent.
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Furthermore, using the postulates a), b), c’) and d), one can derive that

T = αI + βD + γD2,

where α, β and γ may depend only on the principle invariants of D and the state quanti-
ties, which are the pressure, the density and the temperature.

In Newtonian fluid, T is supposed to depend linearly on D.

From this, one can deduce that

T = −pI + 2νD,

where ν is the so called kinematic coefficient of viscosity.

We further suppose that ν = const. > 0.
Substituting this form of T to the momentum equation (1.1), we obtain

∂tu + u · ∇u = −∇p+ ν∆u, (1.1)

This equation, together with
divu = 0, (1.2)

form the system of Navier–Stokes equation. Unknowns: u (velocity), p (pressure).
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The equations (1.1), (1.2) are usually studied in a spatial domain – let us denote it by Ω –
in R3 and in some time interval – let it be (0, T ).

Initial condition:
u( . , 0) = u0 in Ω. (1.3)

Boundary conditions: of various types, the most commonly used condition is

u = 0 on ∂Ω× (0, T ). (1.4)

Beginnings of the qualitative theory: C. W. Oseen (1879–1944), J. Leray (1906–1998).

J. Leray proved the global in time existence of weak solutions in Ω = R3 in the 30–ties of
the 20the century, similar results in other types of domain Ω appeared later.

The global in time existence of a strong solution is known only in some special cases, like
in a 2D flow, in the case of “sufficiently small” f and u0, etc. The local in time existence
of a strong solution is known e.g. for u0 ∈ L3(Ω), divu0 = 0.

It is remarkable that although p does not explicitly appear in the weak formulation of the
problem (1.1)–(1.4), it is implicitly “hidden” in the formulation and plays an important
role in the theory of the equations (1.1), (1.2).
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2. Notation and some auxiliary results

Ω . . . a domain in R3

n . . . the outer normal vector to ∂Ω

C∞0,σ(Ω) . . . the linear space of infinitely differentiable divergence-free vector
functions in Ω, with a compact support in Ω

Lqσ(Ω) . . . (for 1 < q <∞) is the closure of C∞0,σ(Ω) in Lq(Ω)

W1,q
0,σ(Ω) . . . the closure of C∞0,σ(Ω) in W1,q(Ω)

‖ . ‖q . . . the norm in Lq(Ω) and in Lq(Ω)

‖ . ‖k,q . . . the norm in W k,q(Ω) and in Wk,q(Ω) (for k ∈ N)

‖ . ‖q; Ω′ . . . the norm in W k,q(Ω) if Ω′ differs from Ω

( . , . )2 . . . the scalar product in L2(Ω) and in L2(Ω)

( . , . )1,2 . . . the scalar product in W 1,2(Ω) and in W1,2(Ω)

q′ . . . the conjugate exponent to q
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W−1,q′

0 (Ω) . . . the dual space to W1,q
0 (Ω)

W−1,q′

0,σ (Ω) . . . the dual space to W1,q
0,σ(Ω)

‖ . ‖−1,q′ . . . the norm in W−1,q′

0 (Ω)

‖ . ‖−1,q′;σ . . . the norm in W−1,q′

0,σ (Ω)

〈 . , . 〉Ω . . . the duality between elements of W−1,q′

0 (Ω) and W1,q
0 (Ω)

〈 . , . 〉Ω,σ . . . the duality between elements of W−1,q′

0,σ (Ω) and W1,q
0,σ(Ω)

W1,q
0,σ(Ω)⊥ . . . the space of annihilators of W1,q

0,σ(Ω) in W−1,q′

0 (Ω)

= the space
{
f ∈W−1,q′

0 (Ω); ∀ϕ ∈W1,q
0,σ(Ω) : 〈f ,ϕ〉Ω = 0

}
Remark. Note that generally

W1,q
0,σ(Ω) ⊂ {v ∈W1,q

0 (Ω); div v = 0 a.e. in Ω}.

The equality holds e.g. if Ω has a bounded Lipschitz boundary or Ω is a half-space, see
[3] (the book by G. P. Galdi), Sec. III.4, for more details.
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Remark. The Lebesgue space Lq
′
(Ω) can be identified with a subspace of W−1,q′

0 (Ω) so
that if f ∈ Lq

′
(Ω) then

〈f ,ϕ〉Ω :=

∫
Ω

f ·ϕ dx (2.1)

for all ϕ ∈W1,q
0 (Ω). Similarly, Lq

′

σ (Ω) can be identified with a subspace of W−1,q′

0,σ (Ω) so
that if f ∈ Lq

′

σ (Ω) then

〈f ,ϕ〉Ω,σ :=

∫
Ω

f ·ϕ dx (2.2)

for all ϕ ∈ W1,q
0,σ(Ω). If f ∈ Lq

′

σ (Ω) and ϕ ∈ W1,q
0,σ(Ω) then the dualities 〈f ,ϕ〉Ω and

〈f ,ϕ〉Ω,σ coincide, because they are expressed by the same integral.

Remark. If f ∈ Lq
′
(Ω) then the integral on the right hand side of (2.1) also defines a

bounded linear functional on W1,q
0,σ(Ω).

This, however, does not mean that Lq
′
(Ω) can be identified with a subspace of W−1,q′

0,σ (Ω).

The reason is, for instance, that the spaces Lq
′
(Ω) and W−1,q′

0,σ (Ω) do not have the same
zero element. (If ψ is a non-constant function in C∞0 (Ω) then ∇ψ is a non-zero element
of Lq

′
(Ω), but it induces the zero element of W−1,q′

0,σ (Ω).)
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Operator Pq′. W1,q
0,σ(Ω) is a closed subspace of W1,q

0 (Ω). If f ∈ W−1,q′

0 (Ω) then we
denote by Pq′f the restriction of f to W1,q

0,σ(Ω). Thus, Pq′f is an element of W−1,q′

0,σ (Ω),
defined by the equation

〈Pq′f ,ϕ〉Ω,σ := 〈f ,ϕ〉Ω for all ϕ ∈W1,q
0,σ(Ω).

Pq′ is a linear operator from W−1,q′

0 (Ω) to W−1,q′

0,σ (Ω), D(Pq′) = W−1,q′

0 (Ω).

Lemma 1. Pq′ is a bounded operator from W−1,q′

0 (Ω) to W−1,q′

0,σ (Ω). Its domain is the
whole space W−1,q′

0 (Ω), its range is the whole space W−1,q′

0,σ (Ω) and Pq′ is not 1–1.

Proof. Boundedness of Pq′: Let f ∈W−1,q′

0 (Ω). Then

‖Pq′f‖−1,q′;σ = sup
ϕ∈W1,q

0,σ(Ω); ϕ 6=0

|〈Pq′f ,ϕ〉Ω,σ|
‖ϕ‖1,q

= sup
ϕ∈W1,q

0,σ(Ω); ϕ 6=0

|〈f ,ϕ〉Ω|
‖ϕ‖1,q

≤ sup
ϕ∈W1,q

0 (Ω); ϕ6=0

|〈f ,ϕ〉Ω|
‖ϕ‖1,q

= ‖f‖−1,q′.
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Range of Pq′: Let g ∈ W−1,q′

0,σ (Ω). There exists (by the Hahn-Banach theorem) an ex-
tension of g from W1,q

0,σ(Ω) to W1,q
0 (Ω), which we denote by gext. The extension is an

element of W−1,q′

0 (Ω), satisfying ‖gext‖−1,q′ = ‖g‖−1,q′;σ and

〈gext,ϕ〉Ω = 〈g,ϕ〉Ω,σ for all ϕ ∈W1,q
0,σ(Ω). (2.3)

This shows that g = Pq′gext. Consequently, W−1,q′

0,σ (Ω) = R(Pq′).

Pq′ is not 1–1: Taking f = ∇g for g ∈ C∞0 (Ω), we get

〈Pq′f ,ϕ〉Ω,σ = 〈f ,ϕ〉Ω =

∫
Ω

∇q ·ϕ dx = 0 for all ϕ ∈W1,q
0,σ(Ω).

Hence Pq′ is not 1–1. �
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The next lemma tells us more on the space W1,q
0,σ(Ω)⊥ in the case when Ω is a bounded

Lipschitz domain in R3. It comes from [7; Lemma II.2.2.2]. (The book by H. Sohr.)

Lemma 2. Let Ω be a bounded Lipschitz domain in R3, Ω0 be a nonempty sub-domain
of Ω, 1 < q < ∞ and f be a bounded linear functional on W1,q

0 (Ω) that vanishes
on W1,q

0,σ(Ω) (which means that f ∈ W1,q
0,σ(Ω)⊥). Then there exists a unique function

ϕ ∈ Lq′(Ω) such that
∫

Ω0
ϕ dx = 0,

〈f ,ψ〉Ω =

∫
Ω

ϕ divψ dx (2.4)

for all ψ ∈W1,q
0 (Ω)

‖ϕ‖q′ ≤ c ‖f‖−1,q′ (2.5)

where c = c(q,Ω0,Ω).

Formula (2.4) shows that f = ∇ϕ, where operator ∇ acts on ϕ in the sense of distributi-
ons. Thus, we may symbolically write W1,q

0,σ(Ω)⊥ = ∇(Lq
′
(Ω)).
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In order to characterize W1,q
0,σ(Ω)⊥ in the case of an arbitrary domain Ω in R3, we denote

by Lq
′

pot(Ω) the set of all ϕ ∈ Lq
′

loc(Ω) such that ∇ϕ ∈W−1,q′

0 (Ω).

Lemma 3. If Ω is an arbitrary domain in R3, f ∈W1,q
0,σ(Ω)⊥ and Ω0 ⊂⊂ Ω is a

nonempty sub-domain of Ω then there is a unique ϕ ∈ Lq
′

pot(Ω) such that f = ∇ϕ (the
distributional gradient of ϕ) and

∫
Ω0
ϕ dx = 0.

(Here and further on, Ω0 ⊂⊂ Ω means that Ω0 is a bounded sub-domain of Ω such that
Ω0 ⊂ Ω.) The lemma shows that W1,q

0,σ(Ω)⊥ = ∇(Lq
′

pot(Ω)).

The proof can be found in [5; Chap. 4] (the book “Fluids under Pressure”).
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The Helmholtz projection Pq′ and its relation to operator Pq′. Put Gq′(Ω) := {∇ψ ∈
Lq

′
(Ω); ψ ∈ W 1,q′

loc (Ω)}. Gq′(Ω) is a closed subspace of Lq
′
(Ω), see [3; Exercise III.1.2]

(the book by G. P. Galdi).

If each function g ∈ Lq
′
(Ω) can be uniquely expressed in the form

g = v +∇ψ
for some v ∈ Lq

′

σ (Ω) and∇ψ ∈ Gq′(Ω), which is equivalent to the validity of the decom-
position

Lq
′
(Ω) = Lq

′

σ (Ω)⊕Gq′(Ω), (2.6)
then we write

v = Pq′g.

Decomposition (2.6) is called the Helmholtz decomposition and the operator Pq′ is called
the Helmholtz projection.

If q′ = 2 then the Helhholtz decomposition exists on an arbitrary domain Ω and P2 is the
orthogonal projection of L2(Ω) onto L2

σ(Ω).

If q′ 6= 2 then the Helmholtz decomposition exists e.g. if Ω is a domain of the class C2

(see [3; Section III.1]).
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Assume, for a while, that the Helmholtz decomposition of Lq
′
(Ω) exists.

What is the relation between the operators Pq′ and Pq′? Let g ∈ Lq
′
(Ω).

Recall that Pq′ : W−1,q′

0 (Ω)→W−1,q′

0,σ (Ω), while Pq′ : Lq
′
(Ω)→ Lσq

′.

Let g ∈ Lq
′
(Ω). (Hence g can also be treated as an element of W−1,q′

0 (Ω).) One can show
that

〈Pq′g,ϕ〉Ω,σ = 〈Pq′g,ϕ〉Ω,σ
for all ϕ ∈W1,q

0,σ(Ω).

From this, we observe that the Helmholtz projection Pq′ coincides with the restriction of
Pq′ to Lq

′
(Ω).
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3. A weak solution of the Navier–Stokes IBVP – three equiv. definitions

Classical form of the Navier–Stokes IBVP: For T > 0, we consider

∂tu + u · ∇u +∇p = ν∆u + f in QT := Ω× (0, T ), (3.1)

divu = 0 in QT , (3.2)

boundary condition: u = 0 on ΓT := ∂Ω× (0, T ) (3.3)

initial condition: u = u0 in Ω× {0}. (3.4)

Definition 1 of a weak solution of the Navier-Stokes IBVP (3.1)–(3.4). Given u0 ∈
L2
σ(Ω) and f ∈ L2(0, T ; W−1,2

0 (Ω)). A function u ∈ L∞(0, T ; L2
σ(Ω))∩L2(0, T ; W1,2

0,σ(Ω))
is said to be a weak solution to the problem (3.1)–(3.4) if∫ T

0

∫
Ω

[
−u · ∂tφ+ ν∇u : ∇φ+u · ∇u ·φ

]
dx dt =

∫
Ω

u0 ·φ(x, 0) dx+

∫ T

0

〈f ,φ〉Ω dt

(3.5)
for all φ ∈ C∞

(
[0, T ]; W1,2

0,σ(Ω)
)

such that φ(T ) = 0.
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Define A : W1,2
0 (Ω)→W−1,2

0 (Ω) and B :
[
W1,2

0 (Ω)
]2 →W−1,2

0 (Ω) by the equations〈
Av,ϕ

〉
Ω

:=

∫
Ω

∇v : ∇ϕ dx for v,ϕ ∈W1,2
0 (Ω),〈

B(v,w),ϕ
〉

Ω
:=

∫
Ω

v · ∇w ·ϕ dx for v,w,ϕ ∈W1,2
0 (Ω).

Obviously, operator A is one-to-one and

‖Av‖−1,2 ≤ ‖∇v‖2. (3.6)

The bilinear operator B satisfies

‖B(v,w)‖−1,2 = sup
ϕ∈W1,2

0 (Ω), ϕ6=0

|〈B(v,w),ϕ〉Ω |
‖ϕ‖1,2

= sup
ϕ∈W1,2

0 (Ω), ϕ 6=0

|(v · ∇w, ϕ)2|
‖ϕ‖1,2

≤ sup
ϕ∈W1,2

0 (Ω), ϕ6=0

‖v‖1/2
2 ‖v‖

1/2
6 ‖∇w‖2 ‖ϕ‖6

‖ϕ‖1,2
≤ c ‖v‖1/2

2 ‖∇v‖
1/2
2 ‖∇w‖2. (3.7)
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Let u be a weak solution of the IBVP (3.1)–(3.4) in the sense of Definition 1. It follows
from the estimates (3.6) and (3.7) that

Au ∈ L2(0, T ; W−1,2
0 (Ω)) and B(u,u) ∈ L4/3(0, T ; W−1,2

0 (Ω)). (3.8)

Considering function φ in (3.5) in the form φ(x, t) = ϕ(x)ϑ(t) where ϕ ∈ W1,2
0,σ(Ω)

and ϑ ∈ C∞0 ((0, T )), we deduce that u satisfies the equation
d

dt
(u,ϕ)2 + ν

〈
Au,ϕ

〉
Ω

+
〈
B(u,u),ϕ

〉
Ω

= 〈f ,ϕ〉Ω (3.9)

a.e. in (0, T ), where the derivative of (u,ϕ)2 means the derivative in the sense of distri-
butions.

It follows from (3.8) that 〈Au,ϕ〉Ω ∈ L2(0, T ) and 〈B(u,u),ϕ〉Ω ∈ L4/3(0, T ). Since
〈f ,ϕ〉Ω ∈ L2(0, T ), we observe from (3.9) that

d

dt
(u,ϕ)2 (in the sense of distributions) ∈ L4/3(0, T ).

Hence (u,ϕ)2 is (after a possible redefinition on a set of measure zero) a continuous
function in [0, T ). Now, one can deduce from (3.5) that

(u,ϕ)2

∣∣
t=0

= (u0,ϕ)2 for all ϕ ∈W1,2
0,σ(Ω). (3.10)
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Definition 2 of a weak solution of the Navier-Stokes IBVP (3.1)–(3.4). Given u0 ∈
L2
σ(Ω) and f ∈ L2(0, T ; W−1,2

0 (Ω)). Find u ∈ L∞(0, T ; L2
σ(Ω)) ∩ L2(0, T ; W1,2

0,σ(Ω))

(called the weak solution) such that, for each ϕ ∈W1,2
0,σ(Ω), u satisfies the equation

d

dt
(u,ϕ)2 + ν

〈
Au,ϕ

〉
Ω

+
〈
B(u,u),ϕ

〉
Ω

= 〈f ,ϕ〉Ω (3.9)

a.e. in (0, T ) and the initial condition

(u,ϕ)2

∣∣
t=0

= (u0,ϕ)2 for all ϕ ∈W1,2
0,σ(Ω). (3.10)
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Lemma 4. Let X be a Banach space with the dual X∗, 〈 . , . 〉 be the duality between
X∗ and X, −∞ < a < b < ∞ and u, g ∈ L1(a, b; X). Then the following three
conditions are equivalent:

1) u is a.e. in (a, b) equal to a primitive function of g, which means that

u(t) = ξ +

∫ t

a

g(s) ds for some ξ ∈ X and a.a. t ∈ (a, b),

2)
∫ b

a

ϑ′(t)u(t) dt = −
∫ b

a

ϑ(t)g(t) dt for all ϑ ∈ C∞0 ((a, b)),

3)
d

dt
〈η,u〉 = 〈η,g〉 in the sense of distributions in (a, b) for each η ∈ X∗.

If the conditions 1) – 3) are fulfilled then u is a.e. in (a, b) equal to a continuous
function from [a, b] to X.

See Lemma III.1.1 in [8] (the book by R. Temam).

Note that if functions u and g are related as in item 2) then g is called the distributional
derivative of u with respect to t and it is usually denoted by u′.
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Equation (3.9) can also be written in the equivalent form

d

dt
(u,ϕ)2 + ν

〈
P2Au,ϕ

〉
Ω,σ

+
〈
P2B(u,u),ϕ

〉
Ω,σ

=
〈
P2f ,ϕ

〉
Ω,σ
. (3.11)

Let us denote by (u′)σ the distributional derivative with respect to t of u, as a function
from (0, T ) to W−1,2

0,σ (Ω). Applying Lemma 4 (with X = W−1,2
0,σ (Ω) and X∗ = W1,2

0,σ(Ω)),
we deduce that equation (3.11) is equivalent to

(u′)σ + νP2Au + P2B(u,u) = P2f , (3.12)

which is an equation in W−1,2
0,σ (Ω), satisfied a.e. in the time interval (0, T ).

It shows that (u′)σ ∈ L4/3(0, T ; W−1,2
0,σ (Ω)).

Hence u coincides a.e. in (0, T ) with a continuous function from [0, T ) to W−1,2
0,σ (Ω).

Definition 3 of a weak solution of the Navier-Stokes IBVP (3.1)–(3.4). Given u0 ∈
L2
σ(Ω) and f ∈ L2(0, T ; W−1,2

0 (Ω)). Function u ∈ L∞(0, T ; L2
σ(Ω))∩L2(0, T ; W1,2

0,σ(Ω))
is called a weak solution to the IBVP (3.1)–(3.4) if u satisfies equation (3.12) a.e. in the
interval (0, T ) and the initial condition (3.4), where u|t=0 is the value of the aforementi-
oned continuous function at time t = 0.
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Remark. We have shown that u coincides a.e. in (0, T ) with a continuous function from
[0, T ) to W−1,2

0,σ (Ω).

This, however, does not imply that u coincides a.e. in (0, T ) with a continuous function
from [0, T ) to W−1,2

0 (Ω).

It is connected with the fact that the derivative (u′)σ in equation (3.12) is the distributio-
nal derivative with respect to t of u, as a function from (0, T ) to W−1,2

0,σ (Ω) and not the
distributional derivative with respect to t of u, as a function from (0, T ) to W−1,2

0 (Ω).

As it is important to distinguish between these two derivatives, we use the different no-
tation: while the first derivative is denoted by (u′)σ, the second is denoted just by u′. We
can formally write (u′)σ = P2u

′.
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4. An associated pressure – existence, structure, uniqueness

Projections E1,2 and E−1,2. Recall that W1,2
0 (Ω) is a Hilbert space with the scalar pro-

duct
(u,v)1,2 =

∫
Ω

(
∇u : ∇v + u · v

)
dx =

〈
(A+ I)u,v

〉
Ω
.

By analogy, W−1,2
0 (Ω) is a Hilbert space with the scalar product

(f ,g)−1,2 =
〈
f , (A+ I)−1g

〉
Ω

=
(
(A+ I)−1f , (A+ I)−1g

)
1,2
. (4.1)

Denote by E1,2 the orthogonal projection in W1,2
0 (Ω) such that

kerE1,2 = W1,2
0,σ(Ω), (4.2)

and by E−1,2 the adjoint projection in W−1,2
0 (Ω).

It follows from (4.2) that the range of E−1,2 is W1,2
0,σ(Ω)⊥.

Due to (4.1) and the orthogonality of E1,2, we have, for f ∈W−1,2
0 (Ω) and ψ ∈W1,2

0 (Ω)〈
f , E1,2ψ

〉
Ω

=
(
(A+ I)−1f , E1,2ψ

)
1,2

=
(
E1,2(A+ I)−1f ,ψ

)
1,2
.
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However, using (4.1) and the fact that E−1,2 is adjoint to E1,2, we also have〈
f , E1,2ψ

〉
Ω

=
〈
E−1,2f ,ψ

〉
Ω

=
(
(A+ I)−1E−1,2f ,ψ

)
1,2

for all f ∈W−1,2
0 (Ω) and ψ ∈W1,2

0 (Ω).

This shows that
E1,2(A+ I)−1 = (A+ I)−1E−1,2. (4.3)

Applying this identity and the orthogonality of projection E1,2, we get(
E−1,2f ,g

)
−1,2

=
(
(A+ I)−1E−1,2f , (A+ I)−1g

)
1,2

=
(
E1,2(A+ I)−1f , (A+ I)−1g

)
1,2

=
(
(A+ I)−1f , E1,2(A+ I)−1g

)
1,2

=
(
(A+ I)−1f , (A+ I)−1E−1,2g

)
1,2

=
(
f , E−1,2g

)
−1,2

for all f , g ∈W−1,2
0 (Ω), which shows that projection E−1,2 is orthogonal, too.
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Finally, let φ ∈ C∞0 (Ω). Then

(A+ I)∇φ ≡ ∇(−∆ + I)φ ∈ W1,2
0,σ(Ω)⊥.

Hence
E−1,2(A+ I)∇φ = (A+ I)∇φ.

Moreover, applying (4.3), we also have

E−1,2(A+ I)∇φ = (A+ I)E1,2φ.

As A + I is a one-to-one operator from W1,2
0 (Ω) to W−1,2

0 (Ω), the last two equalities
show that

E1,2∇φ = ∇φ for all φ ∈ C∞0 (Ω). (4.4)
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We have f ∈ L2(0, T ; W−1,2
0 (Ω)) in the definition of a weak solution.

We may identify f with a distribution in QT , acting on functions φ ∈ C∞0 (QT ) through
the formula 〈〈

f ,φ
〉〉
QT

:=

∫ T

0

〈
f(t),φ( . , t)

〉
Ω

dt. (4.5)

(〈〈 . , . 〉〉QT denotes the action of a distribution in QT on a function from C∞0 (QT ) or
C∞0 (QT ).)

Definition of an associated pressure. Let u be a weak solution to the Navier–Stokes
IBVP (3.1)–(3.4). If there exists a distribution p inQT such that u and p satisfy the Navier-
Stokes equation

∂tu + u · ∇u +∇p = ν∆u + f (3.1)

in the sense of distributions in QT then p is called a pressure, associated with the weak
solution u.
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Existence of an associated pressure. Let u be a weak solution to the IBVP (3.1)–(3.4).
Due to Lemma 4 , item 1), equation (3.12) is equivalent to

u(t)− u(0) +

∫ t

0

P2

[
νAu + B(u,u)− f

]
dτ = 0

for a.a. t ∈ (0, T ). Since u(t) and u(0) are in L2
σ(Ω), they coincide with P2u(t) and

P2u(0), respectively. Hence

P2

(
u(t)− u(0) +

∫ t

0

[
νAu + B(u,u)− f

]
dτ

)
= 0.

Define F(t) ∈W−1,2
0 (Ω) by the formula

F(t) := u(t)− u(0) +

∫ t

0

[
νAu + B(u,u)− f

]
dτ. (4.6)

F(t) is an element of W1,2
0,σ(Ω)⊥. Hence E−1,2F(t) = F(t) and (I − E−1,2)F(t) = 0.

Thus, 〈
F(t), (I − E1,2)ψ

〉
Ω

=
〈
(I − E−1,2)F(t),ψ

〉
Ω

= 0

for all ψ ∈W1,2
0 (Ω).
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It means that

(I − E−1,2)u(t)− (I − E−1,2)u(0) +

∫ t

0

(I − E−1,2)
[
νAu + B(u,u)− f

]
dτ = 0

holds as an equation in W−1,2
0 (Ω). Applying Lemma 4 (with X = W−1,2

0 (Ω)), we get[
(I − E−1,2)u

]′
+ (I − E−1,2)

[
νAu + B(u,u)− f

]
= 0,

where [(I −E−1,2)u]′ is the distributional derivative with respect to t of (I −E−1,2)u, as
a function from (0, T ) to W−1,2

0 (Ω). This yields

u′ + νAu + B(u,u) = f + [E−1,2u]′ + νE−1,2Au + E−1,2B(u,u)− E−1,2f . (4.7)

Let Ω0 ⊂⊂ Ω be a non-empty domain. By Lemma 3, there exist unique p0(t), p1(t), p2(t),
p3(t) in L2

pot(Ω) such that

∇p0(t) = −E−1,2u(t), ∇p1(t) = −νE−1,2Au(t),

∇p2(t) = −E−1,2B
(
u(t),u(t)

)
, ∇p3(t) = E−1,2f(t)

(4.8)

and
∫

Ω0
pi(t) dx = 0 (i = 0, 1, 2, 3) for a.a. t ∈ (0, T ).
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Using (3.8) and the boundedness of projection E−1,2, we get

∇p0 ∈ L∞(0, T ; W−1,2
0 (Ω)), ∇p1 ∈ L2(0, T ; W−1,2

0 (Ω)),

∇p2 ∈ L4/3(0, T ; W−1,2
0 (Ω)), ∇p3 ∈ L2(0, T ; W−1,2

0 (Ω)).
(4.9)

Hence
p0 ∈ L∞(0, T ; L2

loc(Ω)), p1 ∈ L2(0, T ; L2
loc(Ω)),

p2 ∈ L4/3(0, T ; L2
loc(Ω)), p3 ∈ L2(0, T ; L2

loc(Ω)).
(4.10)

Equation (4.7) shows that if we put

p := ∂tp0 + p1 + p2 + p3, (4.11)

where ∂tp0 is the distributional derivative of p0 with respect to t then∫ T

0

∫
Ω

[
−u ·ψ η′(t) + ν∇u : ∇ψ η(t) + u · ∇u ·ψ η(t)

]
dx dt

=

∫ T

0

〈f ,ψ〉Ω η(t) dt+

∫ T

0

∫
Ω

p divψ η(t) dx dt

for all functions ψ ∈W1,2
0 (Ω) and η ∈ C∞0 ((0, T )).
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Since the set of all finite linear combinations of functions of the type ψ(x) η(t), where
ψ ∈ W1,2

0 (Ω) and η ∈ C∞0 ((0, T )), is dense in C∞0 (QT ) in the topology of L4/3(0, T ;
W−1,2

0 (Ω)), we also have∫ T

0

∫
Ω

[
−u·∂tϕ+ν∇u : ∇ϕ+u·∇u·ϕ

]
dx dt =

∫ T

0

〈f ,ϕ〉Ω dt+

∫ T

0

∫
Ω

p divϕ dx dt

for all ϕ ∈ C∞0 (QT ). This shows that the pair u, p satisfies the Navier-Stokes equation
(3.1) in the sense of distributions in QT .

For a.a. t ∈ (0, T ), the functions p0(t) and p1(t) are harmonic in Ω. This follows from the
identities∫

Ω

p0(t) ∆φ dx = −
〈
∇p0(t),∇φ

〉
Ω

=
〈
E−1,2u(t),∇φ

〉
Ω

=
〈
u(t), E1,2∇φ

〉
Ω

=
〈
u(t),∇φ

〉
Ω

=

∫
Ω

u(t) · ∇φ dx = 0 (for all φ ∈ C∞0 (Ω)).

(We have used (4.4).) Hence, by Weyl’s lemma, p0(t) is a harmonic function in Ω. The
fact that p1(t) is harmonic can be proven similarly.
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Uniqueness of the associated pressure up to an additive distribution of the form
(4.12). If G is a distribution in (0, T ) and ψ ∈ C∞0 (QT ) then we define a distribution
g in QT by the formula 〈〈

g, ψ
〉〉
QT

:=
〈
G,

∫
Ω

ψ dx
〉

(0,T )
, (4.12)

where 〈G, . 〉(0,T ) denotes the action of distribution G on a function from C∞0 ((0, T )).
Obviously, if φ ∈ C∞0 (QT ) then〈〈

∇g,φ
〉〉
QT

= −
〈〈
g, divφ

〉〉
QT

= −
〈
G,

∫
Ω

divφ dx
〉

(0,T )
= 0, (4.13)

because
∫

Ω divφ( . , t) dx = 0 for all t ∈ (0, T ). Thus, p+ g (where p is given by (4.11))
is a pressure, associated with the weak solution u to the IBVP (3.1)–(3.4), too.

On the other hand, if p + g is a pressure, associated with the weak solution u, then g
satisfies

0 =
〈〈
∇g,φ

〉〉
QT

= −
〈〈
g, divφ

〉〉
QT

for all φ ∈ C∞0 (QT ). (4.14)
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For h ∈ C∞0 ((0, T )), define 〈
G, h

〉
(0,T )

:=
〈〈
g, ψ

〉〉
QT
, (4.15)

where ψ ∈ C∞0 (QT ) is chosen so that h(t) =
∫

Ω ψ(x, t) dx for all t ∈ (0, T ).

The definition of the distribution G is independent of the concrete choice of function ψ
due to these reasons:

Let ψ1 and ψ2 be two functions from C∞0 (QT ) such that

h(t) =

∫
Ω

ψ1(x, t) dx =

∫
Ω

ψ2(x, t) dx for t ∈ (0, T ).

Denote by G1, respectively G2, the distribution, defined by formula (4.15) with ψ = ψ1,
respectively ψ = ψ2.

Since supp (ψ1 − ψ2) is a compact subset of QT and∫
Ω

[ψ1( . , t)− ψ2( . , t)] dx = 0 for all t ∈ (0, T ),

there exists a function φ ∈ C∞0 (QT ) such that divφ = ψ1 − ψ2 in QT .
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Then 〈
G1 −G2, h

〉
(0,T )

:=
〈〈
g, ψ1 − ψ2

〉〉
QT

=
〈〈
g, divφ

〉〉
QT
,

which is equal to zero due to (4.14). Formula (4.15) and the identity h(t) =
∫

Ω ψ(x, t) dx
show that the distribution g has the form (4.12).

The next theorem summarizes the derived results:

Theorem 1. Let u be a weak solution to the Navier-Stokes IBVP (3.1)–(3.4). Then
there exists an associated pressure p (as a distribution in QT ) of the form (4.11), where
p0, p2, p3, p4 satisfy (4.8)–(4.10). Moreover,

1) if Ω0 ⊂⊂ Ω then the functions p0(t), . . . , p3(t) can be chosen uniquely so that they
satisfy the additional conditions

∫
Ω0
pi(t) dx = 0 for i = 0, 1, 2, 3 and a.a. t ∈

(0, T ),

2) the functions p0(t) and p1(t) are harmonic in Ω for a.a. t ∈ (0, T ),

3) p + g is also a pressure, associated with the weak solution u, if and only if g is a
distribution of the form (4.12).
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Remark. If Ω is a bounded Lipschitz domain then the statement of Theorem 1 can be
improved so that L2

loc(Ω) is replaced by L2(Ω) in (4.10) and the choice Ω0 = Ω is also
permitted in statement 2). This is enabled by Lemma 2, which shows that the range of
projection E−1,2 coincides with∇(L2(Ω)).

Analogous results for the Navier–Stokes equations with Navier’s boundary conditions

a) u · n = 0, b) [T · n]τ + γu = 0,

see [6] (Š. Nečasová, J. Neustupa, P. Kučera), 2020.
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Example. We give an example of a simple distributional solution to the system (3.1),
(3.2), that is not smooth in dependence on t and the associated pressure cannot be identi-
fied with a function from L1

loc(QT ).

Although the solution does not satisfy the boundary condition (3.3), the example sheds
light on the reasons why the pressure generally exists only as a distribution and not as a
function.

Let ψ ∈W2,2(Ω) be a harmonic function in Ω and a(t) ∈ L∞(0, T ). Put

u(x, t) := a(t)∇ψ(x),

p(x, t) := −a′(t)ψ(x)− a2(t)
|ψ(x)|2

2
.

for x ∈ Ω and 0 ≤ t < T .

Function u is divergence–free and the pair u, p satisfies the Navier-Stokes equation (3.1)
(with f = 0) in the sense of distributions in QT .

If a(t) is chosen so that the derivative a′(t) exists only as a distribution in (0, T ) that
cannot be identified with a function from L1

loc((0, T )) then p is a distribution in QT that
cannot be identified with a function from L1

loc(QT ).
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5. An associated pressure in the case of a smooth domain

The next theorem follows from Theorem 3.1 in [4] (Y. Giga and H. Sohr, 1991):

Theorem 2. LET Ω be a bounded or exterior domain in R3 with the boundary of the
class C2+(h) for some h > 0, or a half-space in R3 or the whole space R3.
LET 0 < T ≤ ∞, 1 < s < 3

2 , 1 < r < 2, 2/r + 3/s = 4, f ∈ Lr(0, T ; Ls(Ω)) ∩
L2(0, T ; L2(Ω)) and u0 ∈W2,s(Ω) ∩W1,s

0,σ(Ω) ∩ L2
σ(Ω).

LET u be a weak solution to the Navier-Stokes IBVP (3.1)–(3.4) and p be an associated
pressure.

THEN u ∈ Lr(0, T0; W2,s(Ω)) for each 0 < T0 ≤ T , T0 < ∞ and function p can be
chosen so that it belongs to Lr(0, T ; L3s/(3−s)(Ω)). Functions u, p satisfy the equations
(3.1), (3.2) a.e. in QT .

Remark. The pressure p is determined uniquely up to an additive function g ∈ Lr(0, T ).

The choice r = 5
3 , s = 15

14 in Theorem 2 yields p ∈ L5/3(QT ).
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6. A pressure, associated with a suitable or dissipative
weak solution

Briefly on suitable weak solutions. If Ω is a smooth domain then a series of authors
have shown that the problem (3.1)–(3.4) has the so called suitable weak solution, which
is a pair of functions u, p such that u is a weak solution, p is an associated pressure, and
u, p satisfy the generalized energy inequality

2ν

∫ T

0

∫
Ω

|∇u|2 φ dx dt ≤
∫ T

0

∫
Ω

[
|u|2

(
∂tφ+ ν∆φ

)
+
(
|u|2 + 2p

)
u · ∇φ

]
dx dt

+ 2

∫ T

0

〈
f ,uφ

〉
Ω

dt (6.1)

for every non-negative scalar function φ with a compact support in QT . This inequality is
also often called the local (or localized) energy inequality.

In order to give a reasonable sense to the integral of 2pu · ∇φ in (6.1), it is necessary
to include some assumptions on the integrability of p to the definition of a suitable weak
solution: most of the authors consider p ∈ L3/2(QT ) or p ∈ L5/3(QT ).
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The first results of this type: L. Caffarelli, R. Kohn, L. Nirenberg [1], 1982.

The local energy inequality enables one to derive a series of “local regularity criteria”,
i.e. criteria for regularity of the suitable weak solution at just one point.

Recall that (x0, t0) is said to be a regular point of solution u if there exists a neighborhood
U(x0, t0) in QT such that u is essentially bounded in U(x0, t0).

Example: There exists ε > 0 such that if (x0, t0) ∈ QT and u is a suitable weak solution
to the problem (3.1)–(3.4), satisfying

lim sup
r→0+

1

r

∫ t0

t0−r2

∫
Br(x0)

|∇u|2 dx dt < ε (6.2)

then (x0, t0) is a regular point of solution u.

There exist many modifications or generalizations of this criterion. For example, the same
proposition also holds if |∇u| is replaced by |curl u× (u/|u|)|, see J. Wolf [9].

The criterion (6.2) can be used in order to prove that the set of hypothetic singular points
of solution u (i.e. points of QT that are not regular) has the one–dimensional Hausdorff
measure of the set of singular points is also zero.
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Remark. Note that if f is e.g. in L10/7(QT ) then f · u ∈ L1(QT ). Thus, the quantity

µ := −∂t|u|2 + ν∆|u|2 − 2ν |∇u|2 − div (|u|2u)− 2div (pu) + 2f · u (6.3)

is well defined as a distribution in QT . In this case, (6.1) means that µ ≥ 0 in QT , which
means that 〈〈µ, φ〉〉QT ≥ 0 for all φ ∈ C∞0 (QT ), φ ≥ 0.

Briefly on a dissipative weak solution. This notion comes from D. Chamorro,
P.-G. Lemarié-Riusset and K. Mayoufi [2], 2018.

The authors show that if u, p is a distributional solution of the Navier-Stokes system
(3.1), (3.2) in Q := Bρ(x0) × (a, b) (where ρ > 0 and −∞ < a < b < ∞) such
that u ∈ L∞(a, b; L2(Bρ(x0))) ∩ L2(a, b; W1,2(Bρ(x0))) then the product pu exists as a
distribution in Q.

Then they define a dissipative weak solution u, p to the system (3.1), (3.2) in Q to be
a distributional solution of (3.1), (3.2) in Q, such that u ∈ L∞(a, b; L2(Bρ(x0))) ∩
L2(a, b; W1,2(Bρ(x0))) and µ ≥ 0 in Q.

It is proven in [2] that if u is a dissipative weak solution in some neighborhood of (x0, t0)
then it satisfies the same regularity criterion (6.2) as the suitable weak solution.
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