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Introduction and Main result and Previous works
\E esult

cubic NLS in 3D

NLS equation with linear potential

i0iu + Hu = |ul?u, (t,z) € R x R3, (NLS)
u(0) = ug € H'(R3),

where

e V(z) : R® — Ris a linear potential.

e H = — A + V has one simple negative eigenvalue eg < 0.

Global behavior of solutions with small mass and energy less than
the first excited states.
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The potential-less case: V =0

Let us recall the results on the potential-less case V' = 0:

10w — Au = |ul?u t,z) € R x R
{ t | | ’ (a ) ’ (NLS())

u(0) = ug € HY(R3).

Recent progress

@ The study begins for solutions close to special solutions such
as the zero and the ground state Q. Recently, more general
solutions are treated with a help of variational argument.

@ As a result, several sharp criterion are obtained in terms of the
conserved quantities.

In the sequel, @ denotes the positive radial solution to

~AQ+Q=@Q"
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Previous results for the case V =0

Functional

M) = | @) Paz, (mass)
Ho(p) i= [, 5IVe(@)da,

G(p) = /R L Je(@)da.

Eo(p) := Ho(¢) — G(e). (energy)

Ko,2(¢) := Baz1(Eo(e2%p(e™-)))
= 2Ho(¢) — 3G(e).
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Previous results for the case V =0

Holmer-Roudenko, Duyckaerts-Holmer-Roudenko, Akahori-Nawa
The set

B = {p € H'(R®) | M(¢)Eo(¢) < M(Q)E0(Q)} C H’

splits into two disjoint subsets according to the sign of Kg 2.

o If Ko,2(up) < O then the solution w(t) blows up for both
time directions (in finite or infinite time).

o If Ko,2(uo) > 0 then the solution w(t) is global and scatters
for both time directions.

<

Remark [Duyckaerts-Roudenko, Nakanishi-Schlag]
Global dynamics in M(u)Eg(u) < M(Q)Eo(Q) + €
(cf. 9-set theorem).
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Scattering and Space-time boundedness

We say a solution u(t) to (NLSg) scatters forward in time if
Juy € H! st.

u(t) = e Py, in H'

as t — oo.

Equivalent characterization (cf. Kato '94)

A solution u(t) to (NLSg) scatters forward in time iff

||U||L§([0,Tmax),L§(R3)) < €39

(global existence Tnax = oo also follows).
Linear solutions satisfy this bound (cf. Strichartz est.)
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stability of ground state Q

In most cases, the global dynamics for large data is studied for
equation with unstable ground state. However, in view of the
physical model, it is natural to have a stable ground state.

@ As for the standard NLS
idu — Au = |ulPlu, (t,x) € R x RY,
the ground state Q is stable if and only if p < 1 + 4/d.

The equation in this range is called mass-subcritical.

@ However, the analysis of global dynamics for mass-subcritical
equations is hard due to the fact that the scaling critical space

has negative regularity. (e.g. smallness in H! implies nothing
on the global dynamics).
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previous attempts

Global dynamics on mass-subcritical (NLSp)

@ Weighted spaces
M. '14, M. "15, Killip-M.-Murphy-Visan '17;

@ Sobolev space with negative regularity and radial symmetry
Killip-M.-Murphy-Visan '19;

@ Fourier Lubesgue and Bourgain-Morrey spaces
Segata-M. '18, M. '16
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Today’s model

Stable ground states and a linear potential

The situation is also created by adding a linear potential.

Due to the presence of a linear potential which yields a negative
eigenvalue of H, (NLS) has stable ground states and unstable first
excited states (at least under small mass constraint)

(NLSo) (V = 0) (NLS) (V £ 0)
0 — stable ground states
Q — unstable first excited states
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cubic NLS in 3D

Let us consider our model:

(NLS)

i0u + Hu = |ul?u, (t,z) € R x R3,
u(0) = uo € H*(R?),

Related works

@ Gustafson-Nakanishi-Tsai ‘04,
Scattering to a ground state for small (in H') solutions

@ Nakanishi ‘17, ‘17
Global dynamics of solutions with small mass and energy less
than that for the first excited states +&, under radial
symmetry.

@ Many other results without a negative eigenvalue.
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Assumption on the potential

For simplicity, we assume the following:

V is a Schwartz function such that

(Al) H = —A + V has one negative simple eigenvalue eqg < 0.
There is no other eigenvalues. 0 is not a resonance of H;

(A2) V(0) = infeps V() < 0.

Remark

e Let 1» € S(R3) be a positive radially decreasing nonzero
function. Then, at) satisfies the condition for a negative constant
a in a suitable range,

e (A2) is essentially the choice of the coordinate.
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Functional

We introduce functionals involving the linear potential V.

Functional

v (p) = [ (FI7e@F + V@)le@]) da,
A

Ev (o) := Hy () — G(p) (energy)

Ky,2(p) := Ba=1(Ev (e3%p(e>+)))

= 2Hy () — 3G(p) — /R 57 IV @e(@)de.

v

The notation is consistent: They coincide with those with
subscription “0” when V = 0.
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Ground state energy &p(p) and First excited energy &7 ()

A set of solitions

7 i ={p € H'(R?) | Jw € Rst. (H + w)p = |p|’¢}.

For any ¢ € . and the corresponding number w, the function
e~y is an exact solution to (NLS) (soliton).

’

éo(p) and 61(p)

For a prescribed value of mass & > 0, we let

¢o(p) := inf{Ev(9) | ¢ € 7, M(¢) = n},
61(p) := inf{Ev(9) | ¢ € 7, M(¢) = p, Ev(¢) > So(p)}-|
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The ground state

(€0, ¢o): the e.v and the normalized e.f. of H (M(¢o) = 1)

Ground state ®[z] (Gustafson-Nakanishi-Tsai)
One has

So(p) = eop +O(?) (1l 0).
Further, 3. > 0s.t. if 0 < p < py then IP[z] € .7 sit.

Ev (®[2]) = o(p),

where z € C is a complex-valued parameter. Further, we have
®e”z] = @[], (®[z], o) L2 = 22

and

B[z] = 20 + o(|2[*)
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Main resultl: Existence of the first excited states

Theorem (M.-Murphy-Segata)

s > 0 s.tif p < py then &1(p) < oo and Iy € 7 s.t.
Ev(¢1) = &1(p). Further,

pt S G1(p) < pTIM(Q)Eo(Q) + (V(0) + o(1))p. (%)

as | 0.

Remark
e For ;. > 0 small, one has

pé(p) < M(Q)Eo(Q).-

This implies that the first excited state energy is less than the
energy of the ground state for (NLSg) (with the same mass).
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Main result 2: global dynamics below first excited states

Theorem (M.-Murphy-Segata)
ptesx > 0 s.t. the set

B := {ug € H'(R®) | M(uo) < pax, Ev (o) < &1(M(uo))}
splits into two disjoint subsets according to the validity of
IVuoll;2 >1 and Kyz(ug) <O. (BO)

Further,

o Ifug € # and (BCQ) is true then the sol. uw(t) blows up for
both time direction (in finite or infinite time).

o Ifug € # and (BQ) is false then the sol. u(t) is global and
scatters to a ground state for both time directions, i.e.,
z(t) s.t. [|[u(t) — ®[z(t)]l|Ls(r;ze) < oo.
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The existence of the ted states
t excited states

Outline of the proof of the first theorem

Outline of the proof Global dynamics

The proof is divided into three steps.
Q Introduce & (p), another characterization of & (1);

@ Prove & (1) obeys the estimate (xx);
@ Construct a minimizer to &1 (u).
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The existence of the excited states
Outline of the proof Global dynamics t excited states

) . ¢ € H', M(y) < p,
&1(p) := inf {HV(‘P) Ky,2(¢) < 0, G(p) > 1}

where

v (¢) := Ev(¢) — 5Kv,2(¢)

=16 +1 [@ YV +2V)lpfda

Remark

e It is easy to see that & (1) < oo (i.e., the nonemptyness of the
set where the infimum is considered);

e Minimization of Eyy = Hy — G is hard since it is not coercive.
Iy () is much easier to handle.

22/33



Lemma (Estimate (%) for &1 (1))
Ve > 0, ux(e) s.t. YV € (0, py)

G1(p) < pTM(Q)Eo(Q) + (V(0) +¢)

(Idea of the proof) By comparison with the value of Iy, for a
specific function.
Substitute o = Qx := A71Q(-/A) into

Iv(¢) = §6(e) + 1 [ (@ VV +2V)|ol*de.

Then,

G1(p) <Tv(Qx) = 1™ 'M(Q)Eo(Q) 4 (V(0) + o(1))
as A | 0, where p = M(Q)A = M(Q»).
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Outline of the proof Global dynamic states

Step 3
For ;. > 0 small, there exists a minimizer to c;[:’l(p,). l

(Sketch of the proof) Take a minimizing sequence {vp}.

(Ev (vn) = &1(p), M(vn) — p, Kv2(vn) — 0)

We apply a profile decomposition of H' bounded sequence based
on the Lieb-type compactness theorem for H! «— L#*:

Jyp; € HY, JyJ € R3 s.t. upto a subseq., VJ > 1

J
vn =0+ Y ¥i(-—vl) + Ry,
j=1
Further, lim,, o0 |y | = oo,

Jim i 7] =o.

[yl — y22| — oo (j1 # j2),
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The existence of the first excited states

Outline of the proof Global dynamics below first excited states

Moreover, we have the decoupling (in)equality:

D M(g) < s Kyz(tho) + Y Koa(hy) <0,
j=0

i=1

oo
E1(p) =Tv (o) + > To(th;)-
Jj=1
The effect of V' is negligible for the profiles shifted to the spacial
infinity.

Three cases

e ¢; = 0 (Vj > 1) = conclusion (compactness)!;
@ 1p; 7# 0 for one j > 1 = precluded by (xx);
@ 1p; # 0 for multiple j > 1 = precluded more easily.

Remark If we put the radial symmetry, the compactness 1; = 0

(V7 > 1) immediately follows from the radial Sobolev.
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Global existence

The variational characterization of &3 gives us the following.

Theorem
EII»L** > 0 s.t. the set

B := {ug € H'(R®) | M(uo) < ptax, Ev (o) < &1(M(uo))}
splits into two disjoint subsets according to the validity of
[Vuollpz2 21 and Ky,2(ug) <0 (BC)

Further
o Ifug € # and (BQ) is true then the sol. u(t) satisfies (BC)
on its lifespan.

o Ifug € # and (BQ) is flase then the sol. u(t) is global and
belongs to L= (R, H').
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On scattering to a ground state

The blowup under the condition (BC) is standard
(cf. [Akahori-Nawa]).

The main part of the proof is to establish scattering to ground
state in the latter case.

Strategy

@ Define the curve z(t), the parameter for the ground state
part, from wu(t),

@ Write u(t) = ®[2(t)] + n and apply Kenig-Merle type
argument to the radiation part 7.
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Outline of the proof

Decomposition into a sum of a ground state and a radiation

Extraction of a ground-state part

Fptsss > 0st. any u € H! with M (u) < Psxs is uniquely
decomposed into

u=®[z]+n, 0 € P[]H,

where

Pc[z]Hl ={f € H' | Re(if, 6zjq)[z]) =0(=1,2)} |

Remark:

8.,, 0, are the partial derivatives obtained by regarding ®[z] as
a function of (21, 22) € R? via z = 21 + iz.

Remark:

The scattering to a ground state is characterized as

< o0.
”n”Lts(R,L‘;) 20/33
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a PDE-ODE system (1/2)

Let us derive a PDE-ODE system for the sosliton part z and the
radiation part n (cf. Gustafson-Nakanishi-Tsai).

An inconvenience and a remedy

The radiation part 77 belongs to a time-dependent space P.[z]H?!.
Letting & := P.[0]n, we fix the space to P.H! := P.[0]H".

o P[0]f =f— %fbo(f, %ﬁbo)-
o P.[0]|p,[z)m is invertible if |z] < 1.
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a PDE-ODE system (2/2)

Lemma (a PDE-ODE system for (&, z))

If u(t) is an H*' solution (NLS) with small mass then
(&(t), 2(t)) € P.H! x C solves

¥@+HK=H&+NW£%
£ +149(|2])z = Na(z, €),

where
Blz]f = Po(|®[2]]*f + ®[2]*f) : P.H' — P.H'

is R-linear operator, and Q2 : Ry — R,
N, :Cx P.H' - P.H' and N, : C x P.H' — C
are nonlinearities.
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Kenig-Merle argument for the radiation part

Further reduction to a single equation

We know the curve z(t) a priori since it is given by u(t).
Hence, one can regard the above system as a single equation for &:

(10; + H)€ = B[z]€ + N1(2,&), =z(t) is given curve

We apply the Kenig-Merle type argument to obtain the space-time
bound of &.

@ We recast the theorem as a kind of variational problem;

@ The failure of the theorem implies the existence of a ghost
minimizer to the problem (use a linearized profile
decomposition);

@ Derive a contradiction from the existence of the ghost
minimizer. Fortunately, this part is the same as the radial case
since the spatial shift is controlled by (sx).
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