1. Bragg Condition

The path difference between 1s and 2s = CA + AD = d sin θ + d sin θ = 2d sin θ

If this path difference is a multiple of λ , the scattered waves 1s and 2s are in phase, resulting in a diffraction.

Bragg condition: $\lambda = 2d \sin \theta$

- Three cubic crystals with an identical lattice constant a. For (001) diffraction, λ = 2a sin θ_{001}

2. Vectors in Reciprocal Lattice, \mathbf{H}_{hkl}

 $\mathbf{H}_{hkl} = h\mathbf{a}^* + k\mathbf{b}^* + \mathbf{c}^*$

$$-\mathbf{H}_{hkl} = |\mathbf{H}_{hkl}| = \frac{1}{\mathbf{d}_{hkl}}$$

 $\mathbf{H} \cdot \mathbf{AB} = (h\mathbf{a}^* + k\mathbf{b}^* + |\mathbf{C}^*) \cdot (\mathbf{b}/k - \mathbf{a}/h) = -\mathbf{a}^* \cdot \mathbf{a} + \mathbf{b}^* \cdot \mathbf{b} = -1 + 1 = 0$ $\mathbf{H} \cdot \mathbf{AC} = (h\mathbf{a}^* + k\mathbf{b}^* + |\mathbf{C}^*) \cdot (\mathbf{c}/l - \mathbf{a}/h) = -\mathbf{a}^* \cdot \mathbf{a} + \mathbf{c}^* \cdot \mathbf{c} = -1 + 1 = 0$

H is normal to both **AB** and **AC**, so it is also normal to (h k l) plane.

$$d_{hkl} = ON = OA \cdot \frac{H_{hkl}}{H_{hkl}} = a/h \cdot \frac{(ha^* + kb^* + lc^*)}{H_{hkl}} = \frac{1}{H_{hkl}}$$

In Cubic Crystals (a = b = c, $\alpha = \beta = \gamma = 90^{\circ}$)

$$H_{hkl} = \frac{(h^2 + k^2 + l^2)^{1/2}}{a} \qquad d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

In Tetragonal Crystals (a = b \neq c, $\alpha = \beta = \gamma = 90^{\circ}$)

$$|a^*| = |b^*| = 1/a, |c^*| = 1/c$$

Tetragonal lattice

Reciprocal lattice

$$H_{hkl} = \sqrt{(h/a)^2 + (k/a)^2 + (l/c)^2}$$
$$d_{hkl} = 1/H_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2 (a/c)^2}}$$

3. Scattering by an Electron and an Atom

The total electric field of scattered waves on Y-Y' is the sum of the waves scattered by individual electrons.

$$\mathsf{E}_{\mathsf{Y}-\mathsf{Y}'} = \mathsf{E}_{\mathsf{e}}\mathsf{cos}\;(2\pi\mathsf{x}/\lambda - \delta_1) + \mathsf{E}_{\mathsf{e}}\mathsf{cos}\;(2\pi\mathsf{x}/\lambda - \delta_2) + \dots \,\mathsf{E}_{\mathsf{e}}\mathsf{cos}\;(2\pi\mathsf{x}/\lambda - \delta_z)$$

$$E_{Y-Y'} = E_e \cos (2\pi x/\lambda - \delta_1) + E_e \cos (2\pi x/\lambda - \delta_2) + \dots E_e \cos (2\pi x/\lambda - \delta_z)$$
$$= E_{atom} \cos (2\pi x/\lambda - \delta_t)$$

 $E_{atom}:$ The amplitude of scattered wave by an atom (0 < $E_{atom} \leq ZE_{e})$

If 2
$$\theta$$
 is zero, $\delta_1 = \delta_2 = \dots = \delta_z$, then $E_{atom} = ZE_e$

Atomic scattering factor, f

$$f = \frac{\text{Amplitude of the wave scattered by an atom}}{\text{Amplitude of the wave scattered by an electron}} = \frac{\text{E}_{\text{atom}}}{\text{E}_{\text{e}}}$$

4. Scattering by a Unit Cell

For Bragg-Matched, $\lambda = 2d_{hkl}\sin\theta_B$ Path difference between 1 and 2 is CB + BD = λ =2dsin θ_B

d_{hkl} Phase difference $\delta = \frac{2\pi}{\lambda}$ (CB + BD) $= 2\pi$

Path difference between 1 and 3 is $\frac{x}{d_{hkl}} \lambda$ Phase difference $\delta = \frac{2\pi}{\lambda} \frac{x}{d_{hkl}} \lambda$ 2πx d_{hkl} \mathbf{H}_{hkl}

 $\mathbf{x} = \frac{\mathbf{H}_{hkl}}{\mathbf{H}_{hkl}} \cdot \mathbf{r}_{n}$ 8

Phase difference
$$\delta = \frac{2\pi x}{d_{hkl}} = \frac{2\pi}{d_{hkl}} \frac{\mathbf{H}_{hkl}}{\mathbf{H}_{hkl}} \cdot \mathbf{r}_n = 2\pi \mathbf{H}_{hkl} \cdot \mathbf{r}_n$$

= $2\pi (hu + kv + lw)$

e.g., Body-centered cubic, (001) diffraction.

 $\delta = 2\pi \; (\boldsymbol{c}^{\star}) \cdot (0.5\boldsymbol{a} + 0.5\boldsymbol{b} + 0.5\boldsymbol{c}) = \pi \; \boldsymbol{c}^{\star}\boldsymbol{c} = \pi$

If the wave scattered from atom A is $f_A cos(2\pi x/\lambda)$, then the wave scattered from atom B is $f_B cos(2\pi x/\lambda - \pi)$, where $f_A = f_B$

 \square The (001) diffraction intensity will be zero.

Phase difference
$$\delta = \frac{2\pi x}{d_{hkl}} = \frac{2\pi}{d_{hkl}} \frac{\mathbf{H}_{hkl}}{\mathbf{H}_{hkl}} \cdot \mathbf{r}_n = 2\pi \mathbf{H}_{hkl} \cdot \mathbf{r}_n$$
$$= 2\pi (hu + kv + lw)$$

- Scattering by a unit cell for (h k l) diffraction

If a unit cell contains atoms, 1, 2, 3, N, with fractional coordinates (u_1, v_1, w_1) , (u_2, v_2, w_2) , ..., (u_N, v_N, w_N) , the total scattered wave can be represented by

$$F = f_1 e^{i\delta 1} + f_2 e^{i\delta 2} + \dots + f_N e^{i\delta N}$$

= $f_1 exp\{2\pi i(hu_1 + kv_1 + lw_1)\} + \dots + f_N exp\{2\pi i(hu_N + kv_N + lw_N)\}$

 $\mathsf{F}_{hkl} = \sum_{1}^{\mathsf{N}} f_{\mathsf{n}} \exp\{2\pi i(hu_{\mathsf{n}} + kv_{\mathsf{n}} + lw_{\mathsf{n}})\} \quad {\texttt{Structure factor}}$

$$F = f_1 e^{i\delta 1} + f_2 e^{i\delta 2} + \dots + f_N e^{i\delta N}$$

= $f_1 exp\{2\pi i(hu_1 + kv_1 + lw_1)\} + \dots + f_N exp\{2\pi i(hu_N + kv_N + lw_N)\}$

$$|F_{hkl}| = \frac{\text{Amplitude of the wave scattered by a unit cell}}{\text{Amplitude of the wave scattered by an electron}}$$

The intensity of the beam diffracted by all the atoms of the unit cell in a direction satisfying the Bragg condition is proportional to $|F_{hkl}|^2$, that is.,

$$\mathrm{I} \propto \mathrm{IF}_{hkl} \mathrm{I}^2$$

Example 1: CsCl Structure

Coordinate: Cs⁺ (0, 0, 0), Cl⁻ ($\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$)

$$\mathsf{F} = f_{\mathsf{Cs}} + f_{\mathsf{Cl}} \, \mathsf{e}^{\pi \mathsf{i}(h + k + l)}$$

If h + k + l are even, $F = f_{Cs} + f_{Cl}$, $F^2 = (f_{Cs} + f_{Cl})^2$ If h + k + l are odd, $F = f_{Cs} - f_{Cl}$, $F^2 = (f_{Cs} - f_{Cl})^2$

Example 2: AB compound with the different shape and size of the unit cell

Coordinates: A (0, 0, 0), B (1/2, 1/2, 1/2)

 $\mathbf{F} = f_{\mathbf{A}} + f_{\mathbf{B}} \, \mathbf{e}^{\pi \mathbf{i}(h + k + h)}$

- If h + k + l are even, $F = f_A + f_B$, $F^2 = (f_A + f_B)^2$
- If h + k + l are odd, $F = f_A f_B$, $F^2 = (f_A f_B)^2$

* Structure factor F is independent of the shape and size of the unit cell.

Important Remarks:

- 1. The diffraction direction is determined by the Bragg condition, which is affected by the shape and size of the unit cell.
- 2. The diffraction intensity is independent of the shape and size of the unit cell, only affected by the atomic arrangement within the unit cell.