1. Bragg Condition

Plane wave

The path difference between 1 s and $2 \mathrm{~s}=\mathrm{CA}+\mathrm{AD}=\mathrm{d} \sin \theta+\mathrm{d} \sin \theta=2 \mathrm{~d} \sin \theta$
If this path difference is a multiple of λ, the scattered waves $1 s$ and $2 s$ are in phase, resulting in a diffraction.

$$
2 \mathrm{~d} \sin \theta=\mathrm{n} \lambda, \quad \text { where } \mathrm{n} \text { is an integer }
$$

- Three cubic crystals with an identical lattice constant a.

For (001) diffraction, $\lambda=2 \mathrm{a} \sin \theta_{001}$
i) Simple cubic

a
ii) Body-centered cubic

ii) Simple cubic(CsCl)

a

1 and 2 are in phase

1 and 3 are out of phase, I_{001} goes to zero

1 and 3 are out of phase, but I_{001} may not go to zero ${ }^{2}$
2. Vectors in Reciprocal Lattice, $\mathbf{H}_{h k l}$

$$
\mathbf{H}_{h k l}=h \mathbf{a}^{\star}+k \boldsymbol{b}^{\star}+l \boldsymbol{C}^{\star}
$$

Lattice
Reciprocal Lattice

- $\mathrm{H}_{h k l}$ is perpendicular to the $(h k l)$ plane in lattice
$-\mathrm{H}_{h k \mid}=\left|\mathrm{H}_{h k \mid}\right|=\frac{1}{\mathrm{~d}_{h k \mid}}$

$$
\begin{aligned}
& \mathrm{OA}=\boldsymbol{a} / h \\
& \mathrm{OB}=\boldsymbol{b} / k \\
& \mathrm{OC}=\boldsymbol{c} / /
\end{aligned}
$$

$$
\begin{aligned}
& A B=O B-O A=\boldsymbol{b} / k-\mathbf{a} / h \\
& A C=O C-O A=\boldsymbol{c} / l-\mathbf{a} / h
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{H} \cdot \mathbf{A B}=\left(h \mathbf{a}^{\star}+k \boldsymbol{b}^{\star}+/ \boldsymbol{c}^{\star}\right) \cdot(\boldsymbol{b} / k-\mathbf{a} / h)=-\boldsymbol{a}^{*} \cdot \boldsymbol{a}+\boldsymbol{b}^{\star} \cdot \boldsymbol{b}=-1+1=0 \\
& \mathbf{H} \cdot \mathbf{A C}=\left(h \mathbf{a}^{\star}+k \boldsymbol{b}^{\star}+/ \boldsymbol{C}^{\star}\right) \cdot(\mathbf{c} / l-\mathbf{a} / h)=-\boldsymbol{a}^{*} \cdot \boldsymbol{a}+\boldsymbol{C}^{*} \cdot \boldsymbol{c}=-1+1=0
\end{aligned}
$$

\mathbf{H} is normal to both $\mathbf{A B}$ and $\mathbf{A C}$, so it is also normal to ($h k I$) plane.

$$
\mathrm{d}_{h k l}=\mathrm{ON}=\mathbf{O A} \cdot \frac{\mathbf{H}_{h k l}}{\mathrm{H}_{h k l}}=\boldsymbol{a} / h \cdot \frac{\left(h \mathbf{a}^{\star}+k \boldsymbol{b}^{\star}+\mid \boldsymbol{C}^{\star}\right)}{\mathrm{H}_{h k l}}=\frac{1}{\mathrm{H}_{h k l}}
$$

In Cubic Crystals ($\mathrm{a}=\mathrm{b}=\mathrm{c}, \alpha=\beta=\gamma=90^{\circ}$)

$$
\begin{aligned}
& \left|\mathbf{a}^{*}\right|=\left|\boldsymbol{b}^{*}\right|=\left|\boldsymbol{c}^{*}\right|=1 / \mathrm{a} \\
& \mathrm{H}_{h k \mid}=\frac{\left(h^{2}+k^{2}+l^{2}\right)^{1 / 2}}{\mathrm{a}} \quad \mathrm{~d}_{h k \mid}=\frac{\mathrm{a}}{\sqrt{h^{2}+k^{2}+l^{2}}}
\end{aligned}
$$

In Tetragonal Crystals $\left(a=b \neq c, \alpha=\beta=\gamma=90^{\circ}\right)$

Tetragonal lattice
Reciprocal lattice

$$
\begin{aligned}
& \mathrm{H}_{n k l}=\sqrt{(\mathrm{h} / \mathrm{a})^{2}+(\mathrm{k} / \mathrm{a})^{2}+(\mathrm{l} / \mathrm{c})^{2}} \\
& \mathrm{~d}_{h k l}=1 / \mathrm{H}_{h k l}=\frac{\mathrm{a}}{\sqrt{\mathrm{~h}^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}(\mathrm{a} / \mathrm{c})^{2}}}
\end{aligned}
$$

3. Scattering by an Electron and an Atom

The amplitude of scattered wave, E_{e}, depends

X-ray

The total electric field of scattered waves on $Y-Y^{\prime}$ is the sum of the waves scattered by individual electrons.

$$
\mathrm{E}_{Y_{-Y^{\prime}}}=\mathrm{E}_{\mathrm{e}} \cos \left(2 \pi \mathrm{x} / \lambda-\delta_{1}\right)+\mathrm{E}_{\mathrm{e}} \cos \left(2 \pi \mathrm{x} / \lambda-\delta_{2}\right)+\ldots \mathrm{E}_{\mathrm{e}} \cos \left(2 \pi \mathrm{x} / \lambda-\delta_{\mathrm{z}}\right)
$$

$$
\begin{aligned}
\mathrm{E}_{Y-Y^{\prime}} & =\mathrm{E}_{\mathrm{e}} \cos \left(2 \pi \mathrm{x} / \lambda-\delta_{1}\right)+\mathrm{E}_{\mathrm{e}} \cos \left(2 \pi \mathrm{x} / \lambda-\delta_{2}\right)+\ldots \mathrm{E}_{\mathrm{e}} \cos \left(2 \pi \mathrm{x} / \lambda-\delta_{\mathrm{z}}\right) \\
& =\mathrm{E}_{\text {atom }} \cos \left(2 \pi \times / \lambda-\delta_{t}\right)
\end{aligned}
$$

$\mathrm{E}_{\text {atom }}$: The amplitude of scattered wave by an atom $\left(0<\mathrm{E}_{\text {atom }} \leq \mathrm{ZE}_{\mathrm{e}}\right)$

If 2θ is zero, $\delta_{1}=\delta_{2}=\ldots .=\delta_{z}$, then $E_{\text {atom }}=Z E_{e}$

Atomic scattering factor, f

$$
f=\frac{\text { Amplitude of the wave scattered by an atom }}{\text { Amplitude of the wave scattered by an electron }}=\frac{\mathrm{E}_{\mathrm{atom}}}{\mathrm{E}_{\mathrm{e}}}
$$

4. Scattering by a Unit Cell

For Bragg-Matched, $\lambda=2 \mathrm{~d}_{n k} \sin \theta_{\mathrm{B}}$
Path difference between 1 and 2 is $C B+B D=\lambda=2 d \sin \theta_{B}$

Phase difference $\delta=\frac{2 \pi}{\lambda}(\mathrm{CB}+\mathrm{BD})$

$$
=2 \pi
$$

Path difference between 1 and 3 is $\frac{\mathrm{x}}{\mathrm{d}_{h k l}} \lambda$

$$
\text { Phase difference } \begin{aligned}
\delta & =\frac{2 \pi}{\lambda} \frac{\mathrm{x}}{\mathrm{~d}_{h k l}} \lambda \\
& =\frac{2 \pi \mathrm{x}}{\mathrm{~d}_{h k l}}
\end{aligned}
$$

$$
\varlimsup^{\uparrow} \mathbf{H}_{h k l}
$$

$$
\mathbf{r}_{\mathrm{n}}=\mathrm{u} \boldsymbol{a}+\mathrm{v} \boldsymbol{b}+\mathrm{w} \boldsymbol{c}
$$

$$
\mathrm{x}=\frac{\mathbf{H}_{h k l}}{\mathrm{H}_{h k l}} \cdot \mathbf{r}_{\mathrm{n}}
$$

$$
\mathbf{r}_{\mathrm{n}}=u \boldsymbol{a}+v \boldsymbol{b}+w \boldsymbol{c}
$$

$$
x=\frac{\mathbf{H}_{h k l}}{\mathbf{H}_{h k l}} \cdot \mathbf{r}_{\mathrm{n}}
$$

$$
\text { Phase difference } \delta=\frac{2 \pi \mathrm{x}}{\mathrm{~d}_{h k l}}=\frac{2 \pi}{\mathrm{~d}_{h k l}} \frac{\mathbf{H}_{h k l}}{\mathrm{H}_{h k l}} \cdot \mathbf{r}_{\mathrm{n}}=2 \pi \mathbf{H}_{\mathrm{hkl}} \cdot \mathbf{r}_{\mathrm{n}} \quad \begin{aligned}
& =2 \pi(h u+k v+l w)
\end{aligned}
$$

e.g., Body-centered cubic, (001) diffraction.

$$
\delta=2 \pi\left(\boldsymbol{c}^{*}\right) \cdot(0.5 \mathbf{a}+0.5 \boldsymbol{b}+0.5 \boldsymbol{c})=\pi \boldsymbol{C}^{*} \boldsymbol{C}=\pi
$$

If the wave scattered from atom A is $f_{A} \cos (2 \pi x / \lambda)$, then the wave scattered from atom B is $f_{B} \cos (2 \pi x / \lambda-\pi)$, where $f_{A}=f_{B}$
\longmapsto The (001) diffraction intensity will be zero.

$$
\mathbf{r}_{\mathrm{n}}=u \boldsymbol{a}+v \boldsymbol{b}+w \boldsymbol{c}
$$

$$
\mathrm{x}=\frac{\mathbf{H}_{h k l}}{\mathbf{H}_{h k l}} \cdot \mathbf{r}_{\mathrm{n}}
$$

$$
\text { Phase difference } \delta=\frac{2 \pi \mathrm{x}}{\mathrm{~d}_{h k l}}=\frac{2 \pi}{\mathrm{~d}_{h k l}} \frac{\mathbf{H}_{h k l}}{\mathrm{H}_{h k l}} \cdot \mathbf{r}_{\mathrm{n}}=2 \pi \mathbf{H}_{\mathrm{hkl}} \cdot \mathbf{r}_{\mathrm{n}} \quad \begin{aligned}
& =2 \pi(h u+k v+l w)
\end{aligned}
$$

- Scattering by a unit cell for ($h k l$) diffraction

If a unit cell contains atoms, $1,2,3, \mathrm{~N}$, with fractional coordinates $\left(u_{1}, v_{1}, w_{1}\right)$, $\left(u_{2}, v_{2}, w_{2}\right), \ldots\left(u_{N}, v_{N}, w_{N}\right)$, the total scattered wave can be represented by

$$
\begin{aligned}
\mathrm{F} & =f_{1} \mathrm{e}^{\mathrm{i} \delta 1}+f_{2} \mathrm{e}^{\mathrm{i} \delta 2}+\ldots f_{\mathrm{N}} \mathrm{e}^{\mathrm{i} \delta \mathrm{~N}} \\
& =f_{1} \exp \left\{2 \pi \mathrm{i}\left(h u_{1}+k v_{1}+l w_{1}\right)\right\}+\ldots+f_{\mathrm{N}} \exp \left\{2 \pi \mathrm{i}\left(h u_{\mathrm{N}}+k v_{\mathrm{N}}+l w_{\mathrm{N}}\right)\right\} \\
\mathrm{F}_{h k l} & =\sum_{1}^{\mathrm{N}} f_{\mathrm{n}} \exp \left\{2 \pi \mathrm{i}\left(h u_{\mathrm{n}}+k v_{\mathrm{n}}+l w_{\mathrm{n}}\right)\right\} \quad \text { Structure factor }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{F} & =f_{1} \mathrm{e}^{\mathrm{i} \delta 1}+f_{2} \mathrm{e}^{\mathrm{i} \delta 2}+\ldots . f_{\mathrm{N}} \mathrm{e}^{\mathrm{i} \delta \mathrm{~N}} \\
& =f_{1} \exp \left\{2 \pi \mathrm{i}\left(h u_{1}+k v_{1}+l w_{1}\right)\right\}+\ldots+f_{\mathrm{N}} \exp \left\{2 \pi \mathrm{i}\left(h u_{\mathrm{N}}+k v_{\mathrm{N}}+l w_{\mathrm{N}}\right)\right\}
\end{aligned}
$$

$$
\left|F_{h k l}\right|=\frac{\text { Amplitude of the wave scattered by a unit cell }}{\text { Amplitude of the wave scattered by an electron }}
$$

The intensity of the beam diffracted by all the atoms of the unit cell in a direction satisfying the Bragg condition is proportional to $\left|F_{h k}\right|^{2}$, that is.,

$$
\mathrm{I} \propto\left|\mathrm{~F}_{h k \mid}\right|^{2}
$$

Example 1: CsCl Structure

Coordinate: $\mathrm{Cs}^{+}(0,0,0), \mathrm{Cl}^{-}(1 / 2,1 / 2,1 / 2)$

$$
\mathrm{F}=f_{\mathrm{Cs}}+f_{\mathrm{Cl}} \mathrm{e}^{\pi i(h+k+1)}
$$

If $h+k+l$ are even $, \quad \mathrm{F}=f_{\mathrm{Cs}}+f_{\mathrm{Cl}}, \quad \mathrm{F}^{2}=\left(f_{\mathrm{Cs}}+f_{\mathrm{CI}}\right)^{2}$

$$
\text { If } h+k+l \text { are odd }, \quad \mathrm{F}=f_{\mathrm{Cs}}-f_{\mathrm{Cl}}, \quad \mathrm{~F}^{2}=\left(f_{\mathrm{Cs}}-f_{\mathrm{Cl}}\right)^{2}
$$

Example 2: AB compound with the different shape and size of the unit cell

Coordinates: $\mathrm{A}(0,0,0), \mathrm{B}(1 / 2,1 / 2,1 / 2)$

$$
\mathrm{F}=f_{\mathrm{A}}+f_{\mathrm{B}} \mathrm{e}^{\pi \mathrm{\pi i}(h+k+1)}
$$

If $h+k+l$ are even,

$$
\mathrm{F}=f_{\mathrm{A}}+f_{\mathrm{B}}, \quad \mathrm{~F}^{2}=\left(f_{\mathrm{A}}+f_{\mathrm{B}}\right)^{2}
$$

If $h+k+l$ are odd,

$$
\mathrm{F}=f_{\mathrm{A}}-f_{\mathrm{B}}, \quad \mathrm{~F}^{2}=\left(f_{\mathrm{A}}-f_{\mathrm{B}}\right)^{2}
$$

* Structure factor F is independent of the shape and size of the unit cell.

Important Remarks:

1. The diffraction direction is determined by the Bragg condition, which is affected by the shape and size of the unit cell.
2. The diffraction intensity is independent of the shape and size of the unit cell, only affected by the atomic arrangement within the unit cell.
