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Abstract

In a veto game, we investigate the effects of “buyout” which allows non-veto players

strategically form an intermediate coalition. We report two main experimental findings

in this paper. First, the frequency of intermediate coalition formation is much lower

than predicted by theory, regardless of the relative negotiation power between veto and

non-veto players. Second, allowing coalition formation among non-veto players does not

affect the surplus distribution between veto and non-veto players, which diverges from

core allocations. This finding contrasts to the literature, which views the ability to form

an intermediate coalition as a valuable asset for non-veto players in increasing their bar-

gaining power. Alternatively, we discuss inequity aversion as a possible explanation to
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support the prevalence of non-core allocations in our data.

Keywords: coalition bargaining; veto game; buyout; strategic coalition formation; veto
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1 Introduction

Besides the prevalence of veto players1 in economic, political, and managerial institutions2,

collective decision-making problems with veto players have been extensively studied in the

frame of game theory since von Neumann and Morgenstern (1944) analyzed a game with

one seller and multiple prospective buyers. In veto games3, the central question is on the

distribution of power among the players and the allocation of the surplus. In any core al-

location, for instance, veto players extract all the surplus.4 However, well-known coopera-

tive power indices, such as Shapley and Shubik (1954), Banzhaf (1964), Deegan and Packel

(1978), and Johnston (1978), assign a substantial value to non-veto players.5 Furthermore,

since Maschler (1965), experimental results have consistently observed non-core allocations.

One of the rationales behind such non-core allocations is a possibility of an agreement

between non-veto players or intermediate coalition formation: a blocking coalition of non-

1A veto player has the ability to decline a choice being made (Tsebelis, 2002).
2Some well-known examples include the permanent members in the UN Security Council and the US Pres-

ident’s veto power over legislative actions. In the super-majority provision, a majority party cannot control the
whole body yet still has veto power against others.

3In this paper, we focus on simple games: See von Neumann and Morgenstern (1944) and Shapley (1962)
for details. In a simple game, a set of veto players is the intersection of all winning coalitions (Nakamura, 1979).
A simple game is a veto game if it has a veto player. The notion of veto game can be extended to characteristic
function form games (Bahel, 2016): a characteristic function form game (N,v) is a veto game if v(S) ≤ v(S ′) for
any S ⊆ S ′ ⊆N and there exists T such that v(S) = 0 for any S ⊆N \ T .

4In particular, when the game has a single veto player, the core allocation is unique and coincides with many
other cooperative solution concepts, such as the bargaining set (Kahan and Rapoport, 1974) and the coalitional
Nash bargaining solution (Compte and Jehiel, 2010). The core allocation also has a clear strategic foundation, as
it is selected by an equilibrium in many non-cooperative bargaining models (Selten, 1981; Baron and Ferejohn,
1989; Chatterjee et al., 1993; Okada, 1996; Winter, 1996) when the bargaining friction is “negligible” or the
environment is “competitive.”

5To be specific, in a three-player veto game with a set of players N = {1,2,3} and a set of winning coalitions
W = {{1,2}, {1,3},N }, the unique core allocation is (1,0,0); while the Shapley-Shubik index (2/3,1/6,1/6), the
Banzhaf index (1/3,1/5,1/5), the Johnston index (8/14,3/14,3/14), and the Deegan-Packel index (1/2,1/4,1/4)
assign a strictly positive value to non-veto players.
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veto players can behave as a “collective veto player” if they can commit, although the worth

of the coalition is zero in the original game. Specifically, Maschler (1963) argues that “when

an intermediate coalition is formed, it may partition itself into subcoalitions, who enter the

next stage of the game as single players” and that non-veto players would “flip a coin under

the condition that the loser would go out of the game,” to enforce one of the non-veto players

to bargain with the veto player; Murnighan and Roth (1980) also point that the non-veto

players have an option to “attempt to form a coalition with the veto players.”6

In experiments, both Maschler (1965) and Murnighan and Roth (1977) find that the re-

sults are significantly different from the core allocation, observing the occasional occurrence

of intermediate coalitions between non-veto players.7 However, the role of intermediate

coalition formation has not been rigorously tested in the literature.8 Based on the advances

in non-cooperative coalition bargaining models developed for the last decades, we design

experiments to test the role of buyout options in a veto game and discuss whether allowing

intermediate coalition formation yields non-core allocations.

In Section 2, we provide theoretical predictions based on the model developed by Lee

(2018).9 The model is suitable to study the interactions among multiple players and the

6The idea of intermediate coalition formation has been developed as formal non-cooperative bargaining
models. Gul et al. (1986) allow buyout in a randomly selected bilateral meeting to characterize the Shapley
value as an equilibrium outcome. On the other hand, Seidmann and Winter (1998), Okada (2000), Gomes (2005),
and Lee (2018) consider coalition bargaining models with intermediate coalition formation where players can
strategically choose their bargaining partners.

7Maschler (1965) reported a higher incidence of coalitions between non-veto players (or weak players) than
Murnighan and Roth (1977). Note Maschler (1965) allowed the players to meet face to face outside of the
laboratory; while Murnighan and Roth (1977) conducted the experiment with a computerized procedure.

8As Maschler (1965) stated, his paper was “neither intended originally to be a scientifically well-planned
experiment, nor, in fact was executed in accordance with the high rigor now achievable by the best available
procedures.” Murnighan and Roth (1977) focused on the effects of communication and information availability,
and Murnighan and Roth (1980) concerned the numbers of non-veto players, rather than the role of intermediate
coalition formation.

9We follow non-cooperative legislative bargaining models in which a proposer is randomly selected in each
period. In earlier models, such as Baron and Ferejohn (1989) and Winter (1996), players can generate a pos-
itive surplus only from winning coalitions, and hence they have no incentive to form non-winning coalitions.
Therefore, due to the lack of strategic unionization, only veto players are expected to take positive shares in
equilibrium. The notion of buyout in non-cooperative coalition bargaining was first introduced by Gul (1989).
In his model, however, as players bargain in a randomly selected bilateral meeting, coalition formation is not
a part of strategic decision making. Seidmann and Winter (1998); Okada (2000); Gomes (2005); Gomes and
Jehiel (2005) introduce coalition bargaining models with intermediate coalition formation where players can
strategically choose their bargaining partners, yet they focus on the results on efficiency and strategic delay. Lee
(2018) considers a model in which players can form an intermediate coalition by “buying out” other players.
Importantly, Lee (2018) fully characterizes the equilibrium outcomes of three-player simple games with buyout
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effects of allowing coalition formation. Specifically, the model presents two types of players,

i.e., veto and non-veto players, where the veto player has stronger negotiation power in the

sense that the surplus cannot be realized without the veto player’s agreement. The most

important element of the model for our purpose is whether strategic coalition formation

among non-veto players is allowed. In particular, we study two different versions of the

model depending on whether non-veto players can form a coalition. If they have the ability

to form a coalition, a non-veto player can make a coalition offer (i.e., “buyout” offers) to the

other non-veto player by offering upfront transfers, and a coalition is formed if the proposal

is accepted. We derive two main theoretical predictions from this model. First, non-veto

players are more likely to form a coalition as their negotiation power against the veto player

diminishes. Second, the ability to form a coalition among non-veto players is expected to

benefit them by increasing their shares in negotiation. The model also predicts that non-

veto players obtain larger shares as the veto player’s negotiation power diminishes.

Section 3 explains our experimental setting. In the main stage of our experiment, subjects

played a game called Deer Hunting Game in a group of three members, in which a veto player

possesses an essential item for hunting the deer whereas two non-veto players possess a non-

essential item each. We implemented a 2 × 2 design in our experiment: one dimension is

whether non-veto players are allowed to form a coalition, and the other dimension is the

strength of negotiation power of the veto player.

Section 4 shows two main experimental findings. First, non-veto players did utilize the

opportunity to form a coalition when they were allowed, but not as often as predicted by

theory. Moreover, in contrast to the first hypothesis provided by theory, the frequencies of

coalition formation were not correlated with players’ negotiation power. Second, in contrast

to the second theoretical prediction, we found that the power to form a coalition had no effect

on non-veto players’ shares in negotiation. Instead, our experimental data support non-core

allocations, in which even non-veto players obtained a substantial amount of share, no matter

whether they were allowed to form intermediate coalitions. This observation contrasts with

the hypothesis in earlier literature, which views the ability to form an intermediate coalition

options, which provide theoretical prediction related to the role of intermediate coalition formation.
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as an important factor behind the prevalence of non-core allocations in veto games.

As such, we provide an alternative explanation for our experimental findings in Section

5. In particular, we argue that inequity aversion has a potential to organize our data. Ex-

tending the standard model to incorporate inequity-averse players, we find that it is possible

to sustain an equilibrium with no coalition. If an inequity-averse veto player is averse to ad-

vantageous inequality (i.e., utility loss from having more than others), he/she is willing to

cede a considerable portion of the surplus to non-veto players. In turn, this generous offer

renders the power to form a coalition less valuable for non-veto players. Therefore, it is pos-

sible in equilibrium for a non-veto player to negotiate directly with the veto player without

exercising the option to form a coalition.

In the literature on veto game experiments, researchers have studied various factors in-

fluencing bargaining outcomes, including information availability (Murnighan and Roth,

1977), group size (Murnighan and Roth, 1980; Montero et al., 2008; Drouvelis et al., 2010),

and voting rule (Bouton et al., 2017; Agranov and Tergiman, 2019).10 But we are not aware

of an experiment that explicitly tests the effect of the ability of non-veto players to form a

coalition.11

Our paper is also related to the experimental works showing that non-core allocations,

such as bargaining sets (Medlin, 1976; Rapoport and Kahan, 1976) and the Shapley value

(Murnighan and Roth, 1977; Bachrach et al., 2011), better describe actual human decision

making. In relation to this literature, we also find that our participants frequently choose

non-core allocations. More importantly, we show that non-veto players’ ability to form a

coalition may not be an important factor behind the occurrence of non-core allocations re-

ported in the literature.

In general, our experiment is related to the growing literature on multilateral bargain-

ing experiments based on Baron and Ferejohn (1989): open and closed amendment rules

10Bouton et al. (2017) found that majority rule with veto power dominates unanimity rule, in which all
players hold veto power, in terms of information aggregation, and Agranov and Tergiman (2019) considered
committee decision making with unanimity rule to study the effects of communication.

11See also Kagel et al. (2010) who investigated the effects of veto power in committee decisions experimentally
and found that veto power lowers efficiency. Nunnari (2020) studied a dynamic setting with veto power in which
an infinitely repeated divide-the-dollar game is played with an endogenous status quo policy.
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(Fréchette et al., 2003), public good provision (Fréchette et al., 2012), pre-play communi-

cation among players (Agranov and Tergiman, 2014), endogenous production of surplus

(Baranski, 2016, 2019), proposer selection contest (Kim and Kim, 2017; Hahn et al., 2020),

and legislative bargaining of cuts versus increases in government spending (Christiansen

and Kagel, 2019). However, to the best of our knowledge, no experiment has investigated

the effect of intermediate coalitions among a subset of players. In particular, we contribute

to this literature by testing the effect of buyout options of non-veto players.

The rest of the paper is organized as follows. Section 2 provides the standard model in

the literature and derives two main theoretical predictions. Section 3 explains our experi-

mental setting and Section 4 shows our main experimental findings. Section 5 discusses a

possible explanation for our experimental data based on an extension of the standard model

by incorporating inequity-averse players. Section 6 concludes our paper. The experimen-

tal instruction can be found in Appendix A.1 and the extended model with inequity-averse

players in Appendix A.2.

2 Theoretical Prediction

2.1 Game Description

LetN = {1,2,3} be a set of players, where its typical element is referred by i, j, and k, distinc-

tively. We consider a three-player simple game in which W = {{1,2}, {1,3},N } is the set of win-

ning coalitions. That is, all winning coalitions contain player 1 and another player. Player 1

is called a veto player, while the other two players are non-veto players. A non-cooperative

bargaining game (N,W,p,δ) requires two more components: p ∈ ∆(N ) is a recognition prob-

ability and δ ∈ (0,1) is a common discount factor. A bargaining game proceeds as follows:

• Proposal: Each player i ∈N writes a proposal si = (j,m) indicating a bargaining partner

j ∈N \ {i} and a coin offer m ∈ [0,1]. Given si = (j,m), denote j(si) = j and m(si) =m.

• Recognition: Among the three proposals {si}i∈N submitted, one proposal is randomly

selected according to the recognition probability: si is selected with a probability of pi .
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• Response: Given si selected, j(si) either accepts or rejects. If j(si) rejects, the same three-

player game is repeated with a probability of δ but it is terminated with a probability

of 1 − δ. If j(si) accepts, i forms a coalition {i, j(si)} paying m(sj ) to j(si). In case of

{i, j(si)} ∈W, i receives a unit surplus and the game ends. Otherwise:

– (No Buyout Allowed) The game ends without the surplus realized.

– (Buyout Allowed) Without loss of generality, say player 2 buys out player 3. The

remaining players, i.e., player 1 and player 2, play a subsequent two-player bar-

gaining game. The subsequent game proceeds in a similar way, but s2 is now

selected with a probability of p2 + p3.

2.2 Equilibrium with No Buyout

As in the literature, we focus on a cutoff strategy equilibrium, as it represents the payoff

induced by any stationary subgame-perfect equilibrium. A cutoff strategy profile (x,q) con-

sists of x ∈ ∆(N ) and q = {qi}i∈N where qi ∈ ∆(N \ {i}). For simplicity, denote qij = qi(j). A

strategy profile (x,q) specifies the behaviors of any player i in the following way: 1) player

i writes a proposal si = (j,m = xj ) with probability qi(j), that is, she chooses her bargaining

partner according to qi ; and 2) whenever player i gets an offer m, she accepts it if and only if

m ≥ xi . A strategy profile (x,q) gives player i a continuation payoff ui(x,q):

ui(x,q) = pi
∑

j∈N\{i}
qijeij +

∑
j∈N\{i}

pjqjixi , (1)

where eij = 1({i, j} ∈ W) − xj refers the excess surplus of forming a coalition {i, j}. When

buyout is not allowed, a strategy profile (x,q) constitutes an equilibrium if and only if it

satisfies the two conditions below:

• Optimality: Player i chooses j(si) to maximize ui(x,q), that is,

qij > 0 =⇒ eij ≥ eik . (OPT)
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• Stationarity: Player i is indifferent between accepting and rejecting, that is,

xi = δui(x,q). (STN)

In our experiment, we consider the two cases of recognition probabilities, p = (1/3,1/3,1/3)

and p = (2/3,1/6,1/6). Abusing notations for simplicity, the former is referred to by p = 1/3

and the latter by p = 2/3, when there is no danger of confusion. Solving the two conditions,

for any p and δ, there is a unique equilibrium which consists of

• x =
( (2−δ)δp

2−(2−p)δ ,
(1−p)(1−δ)δp

2−(2−p)δ , (1−p)(1−δ)δp
2−(2−p)δ

)
; and

• q12 = q13 = 1/2; q21 = q31 = 1.

Note that only a (minimum) winning coalition immediately forms.

2.3 Equilibrium with Buyout

With buyout options, as players take subsequent two-player games into account, we first

consider a two-player bargaining game. It is well-known that there exists a unique equilib-

rium in which the payoff vector is equivalent to the recognition probability (p,1−p). Hence,

we assume that whenever buyout occurs (i.e., a non-winning coalition {2,3} forms), the two

players play accordingly.

Taking the equilibrium strategy profile of the two-player subsequent game as a part of

the equilibrium of the original three-player game, we focus on the cutoff strategy profile

(x,q) with three players as in the case of no buyout. However, the existence of subsequent

games affects the players’ continuation payoff ûi(x,q):

ûi(x,q) = pi
∑

j∈N\{i}
qij êij +

∑
j∈N\{i}

pjqjixi , (2)

where êij = eij + δ(1 − p1)1({i, j} = {2,3}) is the excess surplus of forming {i, j} with buyout.

Note that ê23 ≥ e23 as a non-winning coalition {2,3} can expect (1 − p1) in the following

period (i.e., with a probability of δ); while ê1j = e1j as forming a winning coalition does not
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Table 1: Equilibria for No Buyout and Buyout

δ = 0.95 δ→ 1
p = 1/3 p = 2/3 p = 1/3 p = 2/3

No Buyout
xN1 0.798 0.907 1 1

xN2 = xN3 0.076 0.022 0 0
qN23 - - - -

Buyout
xB1 0.559 0.798 0.556 0.833

xB2 = xB3 0.192 0.073 0.222 0.083
qB23 0.358 1 0.500 1

Note: xi refers the amount of coin offered to player i in equilibrium. q23 refers the
probability that buyout occurs conditional on being non-veto players are selected.

continue to subsequent games. As in the case of no buyout, a strategy profile (x,q) forms an

equilibrium if and only if it satisfies the two conditions, Optimality with buyout

qij > 0 =⇒ êij ≥ êik (OPT-B)

and Stationarity with buyout

xi = δûi(x,q). (STN-B)

There exist two types of equilibria, depending on p and δ. For δ ≤ δ̄ :=
3−
√
−8p2+8p+1

2(p2−p+1) ,

no buyout occurs, and hence, the equilibrium is the same as that in the case of no buyout.

However, if δ > δ̄, a non-winning coalition forms as an intermediate bargaining step in equi-

librium, i.e., q23 > 0. Table 1 summarizes the equilibrium for each cases of buyout, (xB,qB),

and the equilibrium for no buyout, (xN ,qN ), for p = 1/3,2/3, as well as for δ = 0.95 and

δ → 1.12 Note that δ̄ = 6/7 for both p = 1/3 and 2/3. Thus, buyout occurs with a positive

probability.

2.4 Hypotheses

Based on the equilibrium outcomes, the theory provides three main hypotheses:

12We implement δ = 0.95 in our experiment.
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Table 2: Deer Hunting Game

Game Round Format

Game I 1-3 2 person bargaining
Game II 4-6 3 person bargaining
Game III 7-9 2 person bargaining

H1. The less likely the non-veto players are recognised (the higher p), the more likely they

exercise the buyout option (the higher q23), that is,

qB23(p = 1/3) < qB23(p = 2/3).

H2. Reducing the veto player’s recognition probability improves inequality, that is,

xN1 (p = 1/3) < xN1 (p = 2/3) and xB1 (p = 1/3) < xB1 (p = 2/3).

H3. Allowing buyout improves inequality, that is, for p ∈ {1/3,2/3},

xN1 > xB1 .

3 Experimental Design

We conducted our experimental sessions at the laboratory managed by the Center for Re-

search in Experimental and Theoretical Economics (CREATE) at Yonsei University in Korea

in May 2019, and one of the authors conducted all sessions. Our experiment was comput-

erized using oTree (Chen et al., 2016). We recruited 144 undergraduate students from our

subject pool, and each subject participated in one treatment (between-subject design).

Our subjects played the Deer Hunting Game with each other for nine rounds as in Table

2. We first explain Game II, which is our main part, and then discuss the roles of Game I and

III in our experiment.

In each round of Game II, we implemented three-person multilateral bargaining games
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by randomly forming groups of three members. In each group, one member was endowed

with one bow and each of the others with one arrow. Each member was endowed with 600

coins in his/her virtual account, and the member who was successful in hunting the deer

obtained additional 600 coins. To hunt the deer and obtain additional 600 coins, a subject

needed at least one bow and one arrow. As no member was endowed with sufficient items

for deer hunting, subjects must trade items with each other using their coins. Moreover, we

can see that the member with one bow is the veto player and others are the non-veto players

because the veto player can hunt the deer by buying an arrow from either non-veto players,

whereas non-veto players cannot hunt the deer without the bow from the veto player.

More precisely, each round proceeded as follows. Each member submitted his/her of-

fer on the computer terminal. Here, the offer refers to the amount of coins that a member

offered to another member in exchange for the items. Thus, in our experiment, a buyout

offer is an offer of a member with one arrow to another member with one arrow. After all

members submitted their offers, one member’s offer was randomly selected by the server

computer such that the offer of the member with one bow was selected with probability p

and the offer of the member with one arrow with probability (1−p)/2. The selected offer was

shown to the offeree, who then decided whether to accept or reject the offer. If the offeree

accepted, the offeree obtained the promised coins from the offeror, and the offeror obtained

all items of the offeree. If the offeror collected sufficient items for deer hunting, he/she ob-

tained additional 600 coins, and the round ended. Otherwise, the bargaining continued with

probability 95% and was terminated with the complementary probability. This continuation

probability corresponds to the discount factor equal to 0.95 in theory.

We implemented 2×2 design in our experiment as in Table 3. The first dimension is

whether non-veto players are allowed to make buyout offers (B vs. N). The second dimension

is the veto player’s recognition probability p, which is either 1/3 or 2/3 (L vs. H). Thus, if

p = 1/3, all three members are equally likely to be recognized, and if p = 2/3, the veto player

is recognized with probability 2/3 and each non-veto player with probability 1/6. Thus, we

implemented four treatments in our experiment, i.e., BL, BH, NL, and NH, with 36 subjects
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Table 3: Experimental Design

Buyout Allowed Buyout Not Allowed

p = 1/3 BL NL
(N = 36) (N = 36)

p = 2/3 BH NH
(N = 36) (N = 36)

in each treatment. By comparing B-treatment and N-treatment, we can find the effect of

whether non-veto players are allowed to make buyout offers. We can also study the effect of

recognition probability by comparing L-treatment and H-treatment.

We now discuss the roles of Game I and III. The only difference from Game II is that

Game I and III are two-person bargaining games. To be specific, in each round, groups of

two members were randomly formed, and one member was endowed with one bow and

the other with two arrows. As deer hunting requires both types of items, this is a typical

bargaining experiment between two individuals. Other than this difference, Game I and III

were conducted in exactly the same way as Game II.

We implemented Game I before the main game, Game II, for two reasons. First, the main

game was conceivably difficult, so we wanted to provide some experience of bargaining to

our subjects in a simpler environment. Second, and more importantly, we wanted to enhance

our subjects’ subgame perfection reasoning in Game II by having them experience Game I

because Game I is the subgame of Game II after a buyout occurred between non-veto play-

ers. As our experimental goal is to test theoretical predictions from the unique stationary

subgame-perfect equilibrium, which requires a high degree of sequential rationality, it is

conceivable that subjects do not play the equilibrium in our experiment because of failure

to utilize sequential rationality reasoning. Thus, by implementing Game I, we wanted to

minimize this possibility in our experiment to focus on other factors that could influence

our subjects’ behaviors.

Finally, Game III can be thought of as a continuation game after a buyout occurred in

Game II. In Game III, we expect that subjects with a bow will obtain lower (higher) payoffs

12



Table 4: Frequency of Buyout Offers

First offer All offers

BL BH BL BH

Theory 0.358 1 0.358 1
Experiment 0.167 0.181 0.169 0.146

than subjects with two arrows in BL and NL (in BH and NH) because the former subjects

have a lower (higher) recognition probability.

After Game III ended, one round out of nine rounds was randomly chosen by the server

computer, and each coin in a subject’s account was converted to KRW 15 and given to

him/her in cash. A session lasted about 70 minutes, and the average payment was around

KRW 15,500 (around USD 13) including the show-up payment.

4 Experimental Results

To test our first hypothesis, we collected data on the frequency of buyout decisions in Game

II (i.e., Rounds 4-6). The first two columns in Table 4 show the percentages of buyout offers

made by non-veto players in their first decisions. Pooling all three rounds in BL, 16.67% of

non-veto players began their negotiations with buyout offers. The corresponding percentage

in BH is about 18%. The last two columns in Table 4 show the corresponding numbers based

on all offers made by non-veto players. The data clearly show that non-veto players utilize

buyout opportunities, but they make buyout offers far less often than theoretical predictions.

Moreover, there is no difference in the buyout rates between BL and BH, which contrasts with

our hypothesis.

Result 1. The frequencies of a buyout in BL and BH are higher than 0 but lower than the theo-

retical predictions. Pooling the data, there is no statistical difference between the frequencies of a

buyout in BL and BH.

More formally, Table 5 shows regression results with BL as a base category. The depen-

dent variable in columns (1)-(2) is the indicator variable with value 1 if non-veto players
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Table 5: Regression Table for Buyout Offers

(1) (2) (3) (4)
Buyout First offers All offers
BH 0.014 −0.010 −0.096 −0.086

(0.072) (0.071) (0.084) (0.082)
Round −0.021 −0.017 −0.074∗∗ −0.061∗

(0.034) (0.034) (0.036) (0.035)
Delay 0.041∗∗∗ 0.038∗∗∗

(0.010) (0.009)
Age −0.028∗∗ −0.024∗

(0.012) (0.013)
Female −0.154∗∗ −0.112

(0.070) (0.076)
Economics −0.117 −0.181∗∗

(0.081) (0.075)
Atheist −0.081 0.103

(0.082) (0.092)
Constant 0.271 1.071∗∗∗ 0.533∗∗ 1.057∗∗∗

(0.181) (0.373) (0.204) (0.372)
R2 0.002 0.088 0.140 0.183
N 144 144 313 313

Note: p < 0.1; **: p < 0.05; ***: p < 0.01. Standard errors are clustered at subject levels.

made a buyout offer in their first decisions in a round. Two important variables in our exper-

iment are included in the regression: BH is a dummy variable indicating the BH treatment,

and Round is the variable indicating the round of play (i.e., Round is 4, 5, or 6). The re-

sults show that both variables have no effect on a non-veto player’s first decision. In column

(2), we find some effects of individual characteristics: an old, female non-veto subject is less

likely to make a buyout offer in the first decision.

In columns (3)-(4), we use the entire decisions of non-veto subjects. In addition to vari-

ables BH and Round, we also include another indicator variable, Delay, capturing the num-

ber of negotiation failures: for example, Delay is 4 if the subject’s offer is the fourth offer in

a given round.

BH still has no effect in our regression result. The coefficients on Round show that a non-

veto player is less likely to make a buyout offer in a later round. The coefficients are quite
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Table 6: Frequency of Immediate Minimum Winning Coalition

BL BH NL NH

Theory 0.642 0 1 1
Experiment 0.528 0.528 0.667 0.556

stable regardless of the inclusion of control variables, although the statistical significance

slightly falls with controls. Considering that the coefficients on Round are consistently neg-

ative across columns (1)-(4), it seems that learning has a negative effect on a non-veto player’s

buyout decisions.

Columns (3)-(4) show that delay increases the buyout rates, and these effects are highly

significant and robust to controls. Column (4) shows that a non-veto subject’s age reduces

the buyout rates; the Female dummy still has a negative coefficient but is not significant; and

a non-veto subject whose major is Economics is less likely to make a buyout offer.

Table 6 shows the frequency of immediate agreement between the veto player and one

of the non-veto players. In the B-treatment, the theoretical frequency equals the rate of

non-buyout offers from non-veto players: 0.642 in BL and 0 in BH. As buyout offers are not

possible in the N-treatment, the theoretical frequency is equal to 1. In contrast to the theoret-

ical predictions, the data show that (i) there was no difference in the frequency between BL

and BH, (ii) an immediate minimum winning coalition (MWC) was formed less often than

predicted by theory in the N-treatment, and (iii) an immediate MWC was more likely to

arise in the N-treatment than in the B-treatment, where the average frequencies were 0.611

and 0.528, respectively, and this difference was statistically significant (t-test p-value 0.08).

To test our second and third hypotheses, we analyze the data of veto players’ average sur-

plus in Game II. To exclude the possibility that subjects obtain lower payoffs due to random

termination, we look at only successful bargaining cases.

Table 7 shows that the average surplus of veto players increases in the veto player’s recog-

nition probability as predicted by theory, although the veto player’s share is lower than the

theoretical predictions. In particular, in the case of N-treatments, the average surplus is only

15



Table 7: Average Surplus of Veto Players in Game II

BL BH NL NH

Theory 0.56 0.80 0.80 0.90
Experiment 0.51 0.60 0.52 0.61

MWC 0.52 0.60 0.50 0.59

52% in NL and 61% in NH, whereas theory predicts 80% and 90%, respectively, for δ = 0.95.

In B-treatments, the average surplus is only 51% in BL and 60% in BH, whereas theory pre-

dicts 56% and 80%, respectively. The average surplus of veto players is significantly different

across the recognition probability dimension in t-tests: p-value is 0.008 for BL and BH and

0.0117 for NL and NH. In the last row, we report the average surplus of veto players when

an immediate MWC was formed and find similar results.

Result 2. Reducing the veto player’s recognition probability improves inequality.

However, in contrast to our third hypothesis, the veto player’s share is remarkably similar

and does not vary with respect to the buyout dimension: p-value is 0.7731 for BL and NL

and 0.8138 for BH and NH. Thus, our experimental data suggest that an important factor

behind inequality between veto and non-veto players is not the ability to make buyout offers

but the recognition probability.

Result 3. Allowing buyout does not influence inequality.

We now turn to Game III (i.e., Rounds 7-9) to see how subjects played bilateral bargaining

games after their experiences with multilateral bargaining situations. Figure 1(a) shows the

average surplus of bow players, who were considered as veto players in previous rounds.

As there is no difference between B-treatment and N-treatment in Game III, we expect bow

players obtain the same amount of surplus in BL and NL, and in BH and NH, respectively,

which can be confirmed in the figure (p-values are 0.299 for BL vs. NL, and 0.723 for BH vs.

NH). The figure also shows that bow players obtain a higher surplus when their recognition

probability is high, which is also intuitive (p-values are 0.003 for BL vs. BH, and 0.333 for

NL vs. NH).
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Figure 1: Average Surplus in Game III

(a) Average Surplus of Bow Player (b) Average Surplus of Bow/Arrow Player

We also expect that subjects with a bow will obtain lower (higher) payoffs than subjects

with two arrows in BL and NL (in BH and NH) because the former subjects have a lower

(higher) recognition probability. In Figure 1(b), the bars on the left (those with “Low p”)

represent the average surplus of subjects with one bow and two arrows, respectively, when

p = 1/3. As expected, the subjects endowed with a bow obtained a lower surplus on average

as their recognition probability is lower than their counterparts (p-value is 0.0513). Like-

wise, the bars on the right (those with “High p”) show that a higher average surplus accrues

to the subjects with a bow (p-value is 0.004) when p = 2/3.

5 Explanation with Inequity Aversion

We found that our experimental results diverged significantly from the theoretical predic-

tions in two ways. First, non-veto player subjects made a buyout offer much less frequently

than the theoretical benchmark. Second, the surplus was shared more equally among the

players than predicted by theory. In this section, we discuss these observations by focusing

on an individual’s tendency to avoid payoff inequalities (Bolton and Ockenfels, 2000; Fehr

and Schmidt, 1999).

Suppose that it is common knowledge that individuals are inequity-averse, which means

that the subjects expect the surplus (i.e., the additional 600 coins) to be shared more or
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less equally in the subgame after coalition formation, which corresponds to the bilateral

bargaining game like Game I or Game III. For an illustration, let us assume that the expected

payoff in bilateral bargaining is 300 coins. Then this is the surplus to be shared by the non-

veto players who are about to form a coalition. If the non-veto players are egalitarian within

the coalition, each will get 150 coins. If, however, the inequity-averse veto player is willing

to give more than 150 coins to his/her bargaining partner, the ability to form a coalition will

be less valuable. In other words, the agreement between non-veto players to avoid the race

to the bottom is worth being considered only if the competition drives their payoffs down

sufficiently low.

Indeed, our experimental data show that veto players are willing to give more than 150

coins. Veto player subjects offered quite generous amounts of coins and accepted shares

much smaller than the theoretical prediction. Moreover, it is worth emphasizing that this

was also the case in NL and NH, i.e., the treatments without buyout options. This obser-

vation suggests that the main driving factors behind our data are social preferences such

as inequity aversion, not the ability to form a coalition among non-veto players. This ob-

servation also explains why we do not find significant differences between B-treatment and

N-treatment: Because forming a coalition is not very profitable given the veto players’ gen-

erosity, the availability of it does not make much difference. In Appendix A.2, extending our

basic model to incorporate the inequity aversion, we show that it is possible to sustain an

equilibrium in which a veto player and a non-veto player agree to split the surplus without

exercising the non-veto player’s buyout option.

It is worth mentioning that the inequity aversion of players could increase inequality

among non-veto players. In other words, if a coalition is formed among non-veto players,

all non-veto players end up with a positive amount of surplus each, either through upfront

transfers or through direct bargaining with the veto player. In contrast, if the strategic al-

liance of non-veto players is never formed because of inequity aversion, the non-veto player

excluded from MWC obtains zero surplus, which exacerbates inequality between the non-

veto players when considering a substantial amount of surplus going to the other non-veto
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player due to generosity of the veto player. Analyzing a model without buyout option, Mon-

tero (2007) also shows that inequity aversion may increase inequity, but the intuition is dif-

ferent from ours. In her model, inequity aversion may make responders willing to accept

a lower share rather than the exclusion from the winning coalition. If the coalition of non-

veto players can be formed as in our experiment, on the other hand, inequity aversion may

increase inequity by lowering the profitability of the strategic alliance.

6 Concluding Remarks

We implemented a veto game experiment in which we tested whether allowing non-veto

players to form an intermediate coalition has an effect on surplus distribution between veto

and non-veto players. From the standard model in the literature based on the alternating-

offer bargaining by Baron and Ferejohn (1989), we derived two main theoretical predictions.

First, the frequency of coalition formation among non-veto players increases as their nego-

tiation power against the veto player diminishes. Second, non-veto players obtain a higher

share of surplus when they are allowed to form an intermediate coalition. The model also

predicts that the larger negotiation power of the veto player reduces the non-veto players’

shares of surplus.

Our experimental findings offer a stark contrast to the theoretical predictions obtained

from the standard model in the literature. First, although the frequency of coalition forma-

tion among non-veto players is positive throughout sessions, the frequency is much lower

than predicted by theory. Moreover, the frequency is not correlated with power distribution

between the veto and non-veto players. Second, and more importantly, allowing non-veto

players to form a coalition has no effect on their shares of surplus. We provided an argument

for inequity aversion in organizing our experimental data, thereby suggesting that incorpo-

rating behavioral elements in the bargaining models could enhance their predictive power.

We conclude with a discussion about several limitations in our experiment and exten-

sions for further research. First, we implemented a private offer design: that is, only the

offeror and the offeree could observe the offer amount. If participants use offers as a commu-
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nication device (Murnighan and Roth, 1977; Agranov and Tergiman, 2014), the bargaining

outcomes could depend on whether the amount of offer is publicly revealed to all members.

In particular, it could be interesting to investigate whether publicity of offers has an effect

on the frequency of coalition formation among non-veto players.

Following Baron and Ferejohn (1989), our findings depend on the assumption that the

amount of surplus is fixed. It is not clear whether our experimental findings would survive if

the size of the surplus is endogenous instead (Baranski, 2016, 2019). On the one hand, taking

the surplus created as given, participants may behave in the same way as in the fixed surplus

case. On the other hand, their behaviors in the surplus creation stage could enhance the

perception of social preferences such as reciprocity, thereby influencing coalition formation

choices and, consequently, negotiation behaviors between veto and non-veto players. We

leave these topics for future research.
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A Appendix

A.1 Experimental Instruction

(This is the experimental instruction for BL treatment.)

Thank you for participating in the experiment. Please read the following instruction

carefully.

Your decisions will be anonymously collected and used only for research. No one will

know what your decisions are in the experiment.

You will obtain KRW 3,000 as a show-up fee. In addition to this show-up fee, you can

earn additional cash depending on your decisions in the experiment. Thus, at the end of the

experiment, you will obtain at least KRW 3,000.

You will play the Deer Hunting Game with others in this room several times. In each

time you play the Game:

• you are randomly grouped with others in this room (members do not know each other)

• 1 bow and 2 arrows are randomly distributed among group members

• everyone in your group is given 600 coins

• additional 600 coins are given to the person who hunts the deer

• the Game ends when someone in your group hunts the deer

• when no one is successful in hunting, the deer may disappear, in which case the Game

ends

In order to hunt the deer, you need items:
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• you are unable to hunt the deer if you have 1 bow

• you are unable to hunt the deer if you have 1 arrow

• you are unable to hunt the deer if you have 2 arrows

• you will be successful in hunting the deer if you have 1 bow and 1 arrow

• you will be successful in hunting the deer if you have 1 bow and 2 arrows

You can trade items with others by using coins. When the Game begins, you write a

proposal indicating your offer of coins for one group member’s items. For example, you can

make an offer to group member A by offering X coins for member A’s items.

After every member writes a proposal, one proposal will be selected by the server com-

puter. The likelihood of your proposal to be selected depends on your items: 1 bow = 1/3

and 1 arrow = 1/3 and 2 arrows = 2/3. That is, for instance, if you have 1 bow, the chances

that your proposal will be selected are 1 out of 3.

If a proposal is selected and presented to the group member whom the proposer is will-

ing to trade with, the group member decides whether to accept the proposal. The other

group member cannot observe how many coins the proposer offered. If the group member

accepts, he/she gives all his/her items to the proposer and obtains coins from the proposer.

If the group member rejects, no trade occurs.

For example, suppose the proposal is that the proposer is willing to obtain member A’s

items at X coins. In this case, member B cannot observe the value of X. If member A accepts

the offer, the proposer obtains member A’s items by giving X coins to member A. If member

A rejects the offer, no trade occurs.
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After trades end, the server computer verifies whether the proposer collected enough

items for hunting. If the proposer collected enough items for hunting, he/she is successful

in hunting the deer, earning 600 coins, and the Game ends. If the proposer could not col-

lect enough items for hunting, the above process is repeated until someone is successful in

hunting the deer (but only those who have items may write a proposal). But be aware: the

deer may disappear when no one is successful in hunting, where the chances are 5 out of 100

(i.e., 5%), in which situation the Game ends without hunting (and therefore no additional

600 coins).

For example, after trades, suppose member A has 1 bow, and member B has 2 arrows (the

other member has no item). Therefore, no one is successful in hunting the deer.

• If the deer remains (95 out of 100): the Game continues with members A and B writing

new proposals (the other member does not write a proposal because he/she has no

item).

• If the deer disappears (5 out of 100): the Game ends.

You will play the Game in the following sequence. Each game will be played three times

(nine times in total).

• Game I: In Game I, you will be grouped with one person in this room and play the

Game in a two-member group. One member will begin the Game with 1 bow and the

other with 2 arrows.

• Game II: In Game II, you will be grouped with two persons in this room and play the

Game in a three-member group. One member will begin the Game with 1 bow and

others with 1 arrow each.

• Game III: In Game III, the situation is exactly the same as in Game I.
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After Game III ends, the experiment ends. From the nine rounds in the experiment, one

round will be chosen randomly, and the total amount of your coins in that round will be

converted to KRW 15 each and given to you in cash. Please do not talk with others nor use

your phones. Please take your time when making your decisions in the experiment; you do

not have to hurry.

If you have any questions, please raise your hand. Please wait for further instruction.
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A.2 A Simple Model with Inequity Averse Players

This section finds that each of the non-veto players obtains substantial shares without of-

fering a buyout to the other non-veto player when inequity aversion is introduced. Kohler

and Schlag (2019) show that in infinite horizon bargaining games, strong guilt makes players

split the pie equally, regardless of the strength of envy. Following this, and for simplicity, we

assume that guilt is strong, but envy is negligible. With a guilt parameter β ≥ 0, which cap-

tures the distaste for advantageous inequality, player i’s adjusted payoff from an allocation

x ∈ ∆(N ) is

xi − β
1

|N | − 1

∑
j,i

max{xi − xj ,0},

as in Fehr and Schmidt (1999).

Two-Player Subgames

First, we find an equilibrium in a two-player subgame, with a recognition probability (p,1−

p). Assume that p ≥ 1/2, that is, player 1 has a higher recognition probability. Consider a

cutoff strategy profile x: 1) player i makes an offer xj to the other player retaining 1 − xj

for herself; and 2) player i accepts an offer m if and only if m ≥ xi . Note that x1 ≥ x2 in

equilibrium, as p ≥ 1/2. Given such x, the players’ continuation payoff is as follows:

u1 = p(1− x2 − βmax{(1− x2)− x2,0}) + (1− p)(x1 − βmax{x1 − (1− x1),0})

= p(1− x2 − β(1− 2x2)) + (1− p)(x1 − β(2x1 − 1)) (3)

and

u2 = p(x2 − βmax{x2 − (1− x2),0}) + (1− p)(1− x1 − βmax{(1− x1)− x1,0})

= px2 + (1− p)(1− x1), (4)

where the inequity aversion term does not appear in u2.

In equilibrium, any offer must make the respondent indifferent between accepting and
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rejecting, that is, x1 = δu1 and x2 = δu2. Solving the system of equations, the equilibrium

consists of

x1 =
δ(p − δp+ β(1− (2− δ)p))

1− δ(1− 2β(1− p))
(5)

x2 =
δ(1− (1− β)δ)(1− p)
1− δ(1− 2β(1− p))

. (6)

In particular, for p = 2/3 and δ = 0.9, we have

x1 =
12β + 3
30β + 5

and x2 =
27β + 3

60β + 10
. (7)

Note that, as δ→ 1, the equilibrium converges to x1 = x2 = 1/2 for any p and any β.

Three-Player Bargaining Game

We are interested in constructing an equilibrium in which no buyout occurs, which requires

e2({1,2}) ≥ e2({2,3}), e3({1,3}) ≥ e3({2,3}). Furthermore, as shown in Lee (2018), non-veto

players’ payoff should be the same in equilibrium. Hence, we consider a cutoff strategy

profile with x = (x1,x2,x2), q1({1,2}) = q1({1,3}) = 1/2, and q2({1,2}) = q3({1,3}) = 1. Given

such a strategy profile, the players’ continuation payoff is

u1 = p
(
1− x2 −

β

2

(
max{(1− x2)− x2,0}+ max{(1− x2)− 0,0}

))
+(1− p)

(
x1 −

β

2

(
max{x1 − (1− x1),0}+ max{x1 − 0,0}

))
= p

(
1− x2 −

β

2
(2− 3x2)

)
+ (1− p)

(
x1 −

β

2
(3x2 − 1)

)
(8)

and

u2 =
1− p

2

(
1− x1 −

β

2

(
max{(1− x1)− x1,0}+ max{(1− x1)− 0,0}

))
+
p

2

(
x2 −

β

2

(
max{x2 − (1− x2),0}+ max{x2 − 0,0}

))
=

1− p
2

(
1− x1 −

β

2
(1− x1)

)
+
p

2

(
x2 −

β

2
x2

)
. (9)
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For p = 1/3 and δ = 0.9, solving the equilibrium condition, x1 = δu1 and x2 = δu2, it

follows

x1 =
−27β2 + 81β + 66

390β + 100
and x2 =

−27β2 + 51β + 6
195β + 50

. (10)

Furthermore, no buyout condition requires e2({1,2}) ≥ e2({2,3}), or equivalently,

1− x1 − x2 ≥ δx
{2,3}
2 − 2x2

1− x1 − x2 ≥ 0.9
12β + 3
30β + 5

− 2x2, (11)

by replacing x{2,3}2 with x1 in (7). Combining (10) and (11), we conclude that the strategy

profile supports an equilibrium for any β & 0.0264. For instance, when β = 0.203, the equi-

librium outcome coincides with the experiment result, as x1 = 272/600 ≈ 0.453.

For p = 2/3 and δ = 0.9, on the other hand, the equilibrium condition, x1 = δu1 and

x2 = δu2, requires

x1 =
−27β2 − 9β + 66

120β + 80
and x2 =

−27β2 + 51β + 6
240β + 160

. (12)

Again, from no buyout condition, it follows

1− x1 − x2 ≥ δx
{2,3}
2 − 2x2

1− x1 − x2 ≥ 0.9
27β + 3

60β + 10
− 2x2, (13)

by replacing x{2,3}2 with x2 in (7). Using (12) and (13), we confirm that the strategy profile

supports an equilibrium for any β & 0.0642. In particular, for β = 0.229, the equilibrium

outcome coincides with the experiment result, x1 = 349/600 ≈ 0.582.

In addition, we also provide the equilibrium outcome with δ→ 1. If p = 1/3, no buyout

equilibrium requires

x1 =
−β2 + 3β + 2

13β + 2
and x2 =

−2β2 + 4β
13β + 2
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and

1− x1 − x2 ≥ 1/2− 2x2.

Hence, for any β & 0.08002, no buyout equilibrium exists; and for β = 0.33832, the equilib-

rium outcome coincides with the experiment result, x1 = 272/600 ≈ 0.453.

As δ→ 1, If p = 2/3, no buyout equilibrium requires

x1 =
−β2 + 2
4β + 2

and x2 =
−β2 + 2β

8β + 4

and

1− x1 − x2 ≥ 1/2− 2x2.

Thus, for any β & 0.316625, no buyout equilibrium exists; and for β = 0.316625, the equilib-

rium outcome is close to the experiment result x1 = 349/600 ≈ 0.5817.
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