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Abstract

This study examines the mixture hypothesis of conditional geometric distributions using a likelihood

ratio (LR) test statistic based on that used for unconditional geometric distributions. As such, we derive

the null limit distribution of the LR test statistic and examine its power performance. In addition, we

examine the interrelationship between the LR test statistics used to test the geometric and exponential

mixture hypotheses. We also examine the performance of the LR test statistics under various conditions

and confirm the main claims of the study using Monte Carlo simulations.
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1 Introduction

Duration data have been a popular research topic. For example, Van den Berg and Ridder (1998) empiri-

cally examine unemployment and job duration in the Netherlands using search theory, and Kennan (1985)

examines contract strike duration data in U.S. manufacturing industries.

Unobserved heterogeneity is unavoidable in most empirical duration data analyse, which means handling

it correctly is crucial to obtaining correct inferences from the data. Van den Berg and Ridder (1998) specify

a finite mixture model for their data, and Kennan (1985) employs various tests to confirm the absence of

unobserved heterogeneity in his data.

Empirical duration data are often available in the form of grouped observations. Although data analy-

ses are conducted assuming continuous observations, available observations are measured in days, weeks,

months, and so on. This implies that analyzing grouped duration data using a continuous model can lead to a

misspecified model estimation, and that inferencing based on unobserved heterogeneity can be misleading.

Therefore, the main goal of this study is to infer unobserved heterogeneity for grouped duration data. We

achieve this goal by testing a finite mixture hypothesis of two conditional geometric distributions. According

to search theory (e.g., Van den Berg and Ridder, 1998), the equilibrium duration conditionally follows

an exponential distribution on other conditioning variables, unless unobserved heterogeneity is involved.

Furthermore, as we discuss below, grouping exponential data yields geometrically distributed observations.

Therefore, a finite mixture of two conditional geometric distributions can be a proper model for grouped

duration data in the presence of unobserved heterogeneity.

The approach of the current study extends the methodology in Cho and Han (2009) by applying the

method in Cho and White (2007). Cho and Han (2009) provide a methodology for testing a mixture hy-

pothesis of two unconditional geometric distributions, applying the likelihood ratio (LR) test statistic. The

current work extends their approach by supposing a mixture of two conditional geometric distributions and

applying the same LR testing principle in Cho and Han (2009). In this way, we extend the applicability of

the geometric mixture hypothesis.

Another goal of this study is to examine the interrelationship between the null limit distributions of

LR test statistics. Cho and White (2010) derive the null limit distribution of the LR test statistic that tests

the mixture hypothesis of two exponential distributions. We achieve our second goal by examining how

their null limit distribution is associated with ours, which is obtained from the LR test statistic that tests the

geometric mixture hypothesis. We suppose different data sets with different grouping bin sizes and examine

how the null limit distribution of the LR test statistic responds as the size decreases. From this, we obtain a
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regular interrelationship between the null limit distributions.

The remainder of the paper proceeds as follows. Section 2 provides the DGP and model environments,

as well as the null limit distribution of the LR test statistic that tests the conditional geometric mixture

hypothesis. In the same section, we examine the association between the null limit distributions of the LR

test statistics used to test the geometric and exponential mixture hypotheses. In Section 3, we conduct Monte

Carlo experiments and examine the finite performance of the LR test statistic. Section 4 provides concluding

remarks. All mathematical proofs are available in the Appendix.

2 Mixtures of Conditional Geometric Distributions

2.1 Motivation, Data Generating Process (DGP), and Model

Economic theories on duration data are often associated with exponential distributions. For example, using

search theory, Van den Berg and Ridder (1998) show that unemployment and job duration follow exponential

distributions. Specifically, if we let Dt be unemployment or job duration, the following probability density

function (PDF) becomes the conditional distribution of Dt|Xt:

fo(d|x;β∗, δ∗) ≡ δ∗h(x;β∗) exp{−δ∗h(x;β∗)d}, (1)

according to search theory, where Xt is a k × 1 vector of conditioning variables.

Nevertheless, if the duration data are contaminated by unobserved heterogeneity, the conditional expo-

nential distribution yields a misspecified model, which is a common problem in most empirical studies.

Therefore, models for unobserved heterogeneity are often specified as well, often using mixture models.

For example, Nickell (1979) and Van den Berg and Ridder (1998) employ a finite mixture for unobserved

heterogeneity, and Lancaster (1979) assumes a gamma distribution. Please refer to Lancaster (1992) for

other mixture assumptions related to unobserved heterogeneity. Finite mixture models specify the distribu-

tion of Dt|Xt as

fa(d|x;β, δ1, δ2) ≡ πfo(d|x;β, δ1) + (1− π)fo(d|x;β, δ2), (2)

where (π,β, δ) ∈ [0, 1] × B ×∆, and B ×∆ is a convex and compact set in R1+d (d ∈ N). Note that (1)

is the DGP for Dt|Xt in the absence of unobserved heterogeneity, whereas (2) is a mixture model for Dt|Xt

that accommodates unobserved heterogeneity.

Furthermore, most duration data used in empirical studies are grouped observations. For example, Ken-

nan (1985) examines contract strike duration data in U.S. manufacturing industries that are measured in
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days, and Van den Berg and Ridder (1998) examine unemployment and job duration data in the Nether-

lands, which are measured in months. Thus, estimating the parameters using (2) can be misleading, even

though model (2) is correctly specified for Dt|Xt (e.g., Ryu, 1995).

We capture this grouping feature by letting (Yt,X′t)′ ∈ N×Rk be a set of available observations, where

Yt ≡ dDte and dxe := min{a ∈ N : a ≥ x}. Here, model (2) is misspecified for Yt|Xt. Given that Yt ∈ N,

we need to employ a conditional probability mass function (PMF) rather than the conditional PDF. Note

that if an exponential random variable is grouped according to our plan, it follows a geometric distribution.

More specifically, if Dt|Xt is distributed according to (1), the conditional cumulative distribution function

(CDF) of Yt|Xt is obtained as

F (y|x;β∗, δ∗) = 1− exp{−δ∗h(x;β∗)y},

so that the conditional PMF of Yt|Xt is obtained as

F (y|x;β∗, δ∗)− F (y − 1|β∗, δ∗) = [1− exp{−δ∗h(x;β∗)}]× [exp{−δ∗h(x;β∗)}]y−1. (3)

By this feature, a finite mixture model of two geometric distributions becomes a proper model for Yt|Xt in

the presence of unobserved heterogeneity:

Ma ≡ {ga( · | · ;π,β, δ1, δ2) : (π,β, δ1, δ2) ∈ [0, 1]× B×∆×∆},

where for y ∈ N, ga(y|x;π,β, δ1, δ2) ≡ πgo(y|x;β, δ1) + (1− π)go(y|x;β, δ2) and

go(y|x;β, δ) ≡ [1− exp{−δh(x;β)}]× [exp{−δh(x;β)}]y−1.

The main goal of this study is to test the mixture hypothesis of conditional geometric distributions.

Then, we associate this result with that of conditional exponential distributions obtained in the absence of

data grouping.

Before proceeding, several remarks are provided on our approach and its association with the literature.

First, Cho and White (2007, 2010) and Cho and Han (2009) examine the null limit distribution of the like-

lihood ratio (LR) test statistic used to test the mixture hypothesis of regular conditional distributions. In

particular, Cho and White (2010) examine a mixture hypothesis of conditional exponential/Weibull distri-

butions, whereas Cho and Han (2009) examine a mixture of unconditional geometric distributions. They

both derive the null limit distributions of the LR test statistics under their specific environments. The current

study links their independent studies by supposing a mixture model of conditional geometric distributions,

which have a regular interrelationship between their null limit distributions. Second, we reparameterize the
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original modelMa for analytical convenience. Cho and White (2010) point out that ifMa is reparameter-

ized as

M′a ≡ {ga( · | · ;π,β, α1δ∗, α2δ∗) : (π,β, α1, α2) ∈ [0, 1]× B×A×A},

deriving the null limit distribution of the LR test statistic becomes more straightforward, where A is such

that ∆ = {αδ∗ : α ∈ A}. By the invariance principle, the same LR test statistic is obtained from both

M′a andMa. We follow their convention and discuss their usage without loss of generality whenever it is

convenient for our analysis.

2.2 Likelihood Ratio Test for Unobserved Heterogeneity

Following Cho and White (2007, 2010) and Cho and Han (2009), the goal of this study is achieved by

estimating the parameters of interest. The absence of unobserved heterogeneity is also presented using the

same parameters. Specifically, if we let (π∗,β∗, δ1∗, δ2∗) be the parameter describing the DGP of Yt|Xt, we

have that ga( · | · ;π∗,β∗, δ1∗, ·) = go( · | · ;β∗, δ∗), provided that π∗ = 1 and δ1∗ = δ∗. Thus, the conditional

geometric PMF becomes the DGP of Yt|Xt. Here, δ2∗ is irrelevant to the DGP, that is, δ2∗ is not identified.

Analogously, if δ1∗ = δ2∗ = δ∗, ga( · | · ; · ,β∗, δ1∗, δ2∗) = go( · | · ;β∗, δ∗), so that π∗ is not identified.

Finally, if π∗ = 0 and δ2∗ = δ∗, ga( · | · ; · ,β∗, δ1∗, δ2∗) = go( · | · ;β∗, δ∗) and δ1∗ is not identified. This

case is parallel to that in which π∗ = 1 and δ1∗ = δ∗. On the other hand, if π∗ ∈ (0, 1) and δ1∗ 6= δ2∗, the

mixture model must be appropriate for the distribution of Yt|Xt. Therefore, the following is stated as our

proper set of null and alternative hypotheses:

H0 : π∗ = 1 and δ1∗ = δ∗; δ1∗ = δ2∗ = δ∗; π∗ = 0 and δ2∗ = δ∗, versus

H1 : π∗ ∈ (0, 1) and δ1∗ 6= δ2∗.

The current study testsH0 versusH1 using the following LR test statistic:

LRn(A) ≡ 2

{
n∑
t=1

ln ga(Yt|Xt; π̂n, β̂n, δ̂1n, δ̂2n)−
n∑
t=1

ln go(Yt|Xt; β̂on, δ̂on)

}
,

where n is the sample size, and (β̂on, δ̂on) and (π̂n, β̂n, δ̂1n, δ̂2n) are the maximum-likelihood estimators

(MLEs) obtained under the null and alternative model assumptions, respectively. Here, the LR test statistic is

indexed by the parameter spaceA for α, which is part ofM′a. As discussed below, the null limit distribution

of the LR test statistic is influenced by the parameter space A. We accommodate this feature by letting the

LR test statistics be indexed by the parameter space A.
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Here, we examine the LR test statistic because other test statistics are difficult to apply in this context.

Note that Davies’s (1977, 1987) identification problem is present in multiple ways under H0. That is, if

π∗ = 1 (resp. π∗ = 0), δ2∗ (resp. δ1∗) is not identified, which yields Davies’s (1977, 1987) identification

problem. Furthermore, if δ1∗ = δ2∗, π∗ is not identified, implying Davies’s (1977, 1987) identification

problem in a different manner. This trifold identification problem makes it difficult to apply Wald’s (1943)

testing principle, although applying the LR testing principle is straightforward. Thus, we examine the LR

test statistic in this study.

Multifold identification problems are often observed in the literature. For example, Cho and Ishida

(2012), Baek, Cho, and Phillips (2015), and Cho and Phillips (2018) test polynomial model hypotheses

using power transformations, and multifold identification problems arise under their null hypotheses. As

another example, Cho and White (2011a, 2011b), Cho, Ishida, and White (2011, 2014), and White and Cho

(2011) test correct model assumptions using artificial neural network models, and they too observe multifold

identification problems under their correct model assumptions. The aforementioned studies handle multifold

identification problems by applying the LR testing principle when testing their hypotheses. The current study

extends the existing literature by applying the LR testing principle to testing the mixture hypothesis.

2.2.1 Asymptotic Null Distribution

Cho and White (2007) examine the LR test statistic in a general context and apply the methodology in

Andrews (1999, 2001) to show that the LR test statistic weakly converges to a function of a Gaussian

process under H0. Their result also holds for our problem. The following theorem reveals the null limit

distribution of the LR test statistic.

Theorem 1. Given Assumptions 1 to 4 in the Appendix, if inf A > 1/2,

LRn(A)⇒ LR(A) ≡ sup
α∈A

(max[0,G(α)])2 (4)

underH0, where G(·) is a Gaussian process such that for each α and α′ ∈ A,

E[G(α)G(α′)] =
ρ(α, α′)√

ρ(α, α)
√
ρ(α′, α′)

, (5)

where ρ(α, α′) ≡ A(α, α′)− B(α)′C−1B(α′);

A(α, α′) ≡ E
[

[Qt(α)−Qt(1)][Qt(α
′)−Qt(1)]

[1−Qt(1)][Qt(1)−Qt(α)Qt(α′)]

]
;

B(α) ≡ E

[ [Qt(α)−Qt(1)]

[Qt(1)− 1][Qt(α)− 1]

] δ∗h(Xt;β∗)

δ∗∇βh(Xt;β∗)

 ;
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C ≡ E

 Qt(1)δ2
∗

[Qt(1)− 1]2

 h(Xt;β∗)2 h(Xt;β∗)∇′βh(Xt;β∗)

h(Xt;β∗)∇βh(Xt;β∗) ∇βh(Xt;β∗)∇′βh(Xt;β∗)

 ;

and Qt(α) ≡ exp[αδ∗h(Xt;β∗)]. �

A number of remarks are warranted. First, the null limit distribution of the LR test statistic depends on

the parameter space A. Given that the functional of the Gaussian process G(·) is maximized over A, if we

use a different parameter space for A, a different null limit distribution is obtained.

Second, it is more convenient to useM′a thanMa to obtain the null limit distribution. Here, the result

in Theorem 1 is derived from the Gaussian process G(·) defined on A, which is associated withM′a. That

is why we reparameterizeMa asM′a.

Third, the covariance structure in (5) generalizes the result in Cho and Han (2009). If we let h(Xt;β∗) ≡

1 so that for each α and α′, we can denoteQt(α), Qt(α′), andQt(1) as 1−p, 1−p′, and 1−p∗ respectively,

it follows that

ρ(α, α′) =
(p− p∗)2(p′ − p∗)2

pp′(1− p∗)p∗[(1− p∗)− (1− p)(1− p′)]
.

Note that this covariance structure is identical to that of Cho and Han (2009, p. 51), treating their theorem 1

as a special case of Theorem 1 here.

Fourth, Theorem 1 is consistent with other results in the literature. Table 1 summarizes the relevant

literature on testing mixture hypotheses under different DGP and model conditions. The studies in Table 1

also provide methodologies that consistently yield the asymptotic critical values of their test statistics. When

characterizing the null limit distributions of their test statistics, these studies all exploit Gaussian processes,

as Theorem 1 does.

Fifth, the null limit distribution of the LR test statistic is not distribution-free. Note that the covariance

structure of G(·) is affected by the distribution of Xt: for different distributions of Xt, different functional

forms are obtained for ρ(·, ·). In addition, the distribution of Xt is often unknown. In this case, the closed

form of ρ(·, ·) is difficult to obtain. Furthermore, the functional form of ρ(·, ·) depends on h(Xt;β). Differ-

ent specifications for h(Xt;β) lead to various functional forms for ρ(·, ·), and thus, to different asymptotic

critical values. This aspect implies that the asymptotically conservative critical values advocated by Davies

(1977) and Piterbarg (1996) are difficult to apply here, because their critical values are derived using the

functional form of ρ(·, ·).

Sixth, the mixture hypothesis in our context needs to be tested nonparametrically. The weighted boot-

strap method of Hansen (1996) is useful for this purpose. Cho, Cheong, and White (2011) implement the

weighted bootstrap method for the LR test statistic described in Cho and White (2010). The procedure of
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the weighted bootstrap method is described here for the current study to be self-contained:

(1) For each grid point of α ∈ A, compute Ŝnt(α) ≡ {D̂nt(α)}−
1
2 Ŵnt(α), where

Ŵnt(α) ≡ [1− R̂nt(α)]− Û′nt

[
n∑
t=1

ÛntÛ
′
nt

]−1 [ n∑
t=1

Ûnt[1− R̂nt(α)]

]
,

D̂nt(α) ≡ n−1
n∑
t=1

[1− R̂nt(α)]2 − n−1
n∑
t=1

[1− R̂nt(α)]Û′nt

[
n∑
t=1

ÛntÛ
′
nt

]−1 n∑
t=1

Ûnt[1− R̂nt(α)],

R̂nt(α) ≡ go(Yt|Xt; β̂on, αδ̂on)/go(Yt|Xt; β̂on, δ̂on),

and Ûnt ≡ ∇(β,δ) ln[go(Yt|Xt; β̂on, δ̂on)].

(2) Generate Zjt ∼ IID N(0, 1), for t = 1, 2, . . . , n, and j = 1, 2, . . . , J , and compute the empirical

distribution of

LRjn(A) ≡ sup
α∈A

(
max

[
0,

1√
n

n∑
t=1

Ŝnt(α)Zjt

])2

by iterating J times.

(3) The empirical p-value is computed as p̂Jn ≡ 1
J

∑J
j=1 I[LRn(A) < LRjn(A)].

According to Hansen (1996), p̂Jn asymptotically follows a uniform distribution on [0, 1] under H0. Other-

wise, it should converge to zero in probability. Thus, if p̂Jn is less than the level of significance, we reject the

null hypothesis.

2.2.2 Asymptotic Power of the LR Test Statistic

The LR test statistic has asymptotic power when the mixture model is correctly specified.

Theorem 2. Given Assumptions 1 to 4 and H1, ifMa is correctly specified and inf A > 1/2, then for any

sequence {cn} such that cn = o(n), P[LRn(A) ≥ cn]→ 1 as n→∞. �

Although Theorem 2 holds straightforwardly by the Kullback–Leibler information criterion (KLIC), we

prove it in the Appendix.

Despite its consistency, a careful interpretation of Theorem 2 is needed. First, if Ma is misspecified,

the consistency of Theorem 2 may not hold. Cho and White (2008) examine a general theory of testing

the mixture hypothesis of misspecified models and provide regularity conditions under which the LR test

statistic has a nondegeneracy property and asymptotic power under H0 and H1, respectively. Theorem 2

is valid only whenMa is correctly specified. Second, the LR test statistic may appear to have unobserved
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heterogeneity, even under H0, because h(·;β) is misspecified. Note that h(·;β) contributes to E[Yt|Xt].

Therefore, we recommend testing for the correct conditional mean specification first to avoid this consistent

type-I error, before applying the LR test statistic.

2.3 Asymptotic Behavior of the LR Test Statistic Local to the Exponential Distribution

There is a regular interrelationship between the null limit distribution in Theorem 1 and that of the LR

test statistic used to test for the conditional exponential mixture hypothesis given in Cho and White (2010,

theorem 1). In Section 2.1, we showed that geometrically distributed observations are generated by grouping

exponentially distributed observations by supposing a unitary bin size. In this subsection, we suppose a

different bin size and derive the null limit distribution of the LR test statistic. Thus, we examine the null

limit distribution when the grouping bin size is extremely small. In this case, the null limit distribution of

the LR test statistic can be thought of as an approximation of the LR test statistic used to test the conditional

exponential mixture hypothesis.

This aspect implies that if the grouping bin size is sufficiently small, the asymptotic critical values in

Cho and White (2010) can be used for our inference purpose without implementing the weighted bootstrap

method. Note that Cho and White (2010) show that the null limit distribution of their LR test statistic is

asymptotically distribution-free, providing a straightforward simulation method that delivers the asymptotic

critical values. Thus, applying their asymptotic critical values can be efficient for our inferencing purpose.

Here, we consider different bin sizes. For the same Dt given in (1), if we suppose that the grouping bin

size is given as ∆ > 0, then

F (d|x;β∗, δ∗)− F (d−∆|β∗, δ∗) = [1− exp{−δ∗∆h(x;β∗)}]× [exp{−δ∗h(x;β∗)}]d−∆. (6)

If we further let ∆ ≡ 1/ω, (6) is converted into the following geometric random variable:

F [k/ω|x;β∗, δ∗]− F [(k − 1)/ω|β∗, δ∗] = [1− exp{−δ∗h(x;β∗)/ω}]× [exp{−δ∗h(x;β∗)/ω}]k−1,

where k = 1, 2, . . . Note that this is the conditional PMF of Y ω
t ≡ dDt × ωe on Xt: for y = 1, 2, . . ., the

conditional PMF of Y ω
t is

gωo (y|x;β∗, δ∗) ≡ [1− exp{−δω∗ h(x;β∗)}]× [exp{−δω∗ h(x;β∗)}]y−1,

where δω∗ ≡ δ∗/ω. The only difference between this and the conditional distribution in (3) is the adjustment

of the location parameter δ∗ to accommodate the influence of ω. If ω = 1, the same conditional PMF is
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obtained from (6), and the LR test statistic LRn(A) in Section 2.2 is a special case of the following LR test

statistic:

LRωn(A) ≡ 2

{
n∑
t=1

ln gωa (Y ω
t |Xt; π̂n, β̂n, δ̂

ω
1n, δ̂

ω
2n)−

n∑
t=1

ln gωo (Y ω
t |Xt; β̂on, δ̂

ω
on)

}
,

where for y ∈ N, ga(y|x;π,β, δω1 , δ
ω
2 ) ≡ πgωo (y|x;β, δω1 )+(1−π)gωo (y|x;β, δω2 ), and (π̂n, β̂n, δ̂

ω
1n, δ̂

ω
2n) and

(β̂on, δ̂
ω
on) are the MLEs obtained by maximizing the alternative likelihood function

∑n
t=1 ln gωa ( Y ω

t |Xt; ·)

and the null likelihood function
∑n

t=1 ln gωo (Y ω
t |Xt; ·), respectively. Note that LRn(A) is obtained from

LRωn(A) by letting ω be unity.

We contain the null limit distribution of LRωn(A) in the following theorem.

Theorem 3. Given Assumptions 1 to 4 in the Appendix, if inf A > 1/2, for each ω,

LRωn(A)⇒ LRω(A) ≡ sup
α∈A

(max[0,Gω(α)])2 (7)

underH0, where Gω(·) is a Gaussian process such that for each α and α′ ∈ A,

E[Gω(α)Gω(α′)] =
ρω(α, α′)√

ρω(α, α)
√
ρω(α′, α′)

,

where ρω(α, α′) ≡ Aω(α, α′)− Bω(α)′C−1
ω Bω(α′);

Aω(α, α′) ≡ E
[

[Qt(α/ω)−Qt(1/ω)][Qt(α
′/ω)−Qt(1/ω)]

[Qt(1/ω)− 1][Qt(α/ω)Qt(α′/ω)−Qt(1/ω)]

]
;

Bω(α) ≡ E

 δω∗ [Qt(α/ω)−Qt(1/ω)]

[Qt(1/ω)− 1][Qt(α/ω)− 1]

 h(Xt;β∗)

∇βh(Xt;β∗)

 ; and

we let Cω be defined as

E

 (δω∗ )2Qt(1/ω)

[Qt(1/ω)− 1]2

 h(Xt;β∗)2 h(Xt;β∗)∇′βh(Xt;β∗)

h(Xt;β∗)∇βh(Xt;β∗) ∇βh(Xt;β∗)∇′βh(Xt;β∗)

 .
Note that the covariance structure ρω(α, α′) is identical to ρ(ω, ω′) in Theorem 1 if ω is equal to one.

Because Theorem 2 treats a more general case than Theorem 1, Theorem 2 is proved in the Appendix, and

we omit proving Theorem 1.

The goal of this section is achieved by letting the grouping bin size ∆ tend to zero (or ω → ∞). In the

following theorem, we provide the null limit distribution of the LR test statistic obtained by letting ω →∞.

Theorem 4. Given Assumptions 1 to 4 in the Appendix, if inf A > 1/2 and there is no conditioning variable

Xt, then

lim
ω→∞

LRω(A)⇒ LR∞(A) ≡ sup
α∈A

(max[0,G∞(α)])2 (8)
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underH0, where G∞(·) is a standard Gaussian process such that for each α and α′ ∈ A,

E[G∞(α)G∞(α′)] =
(2α− 1)1/2(2α′ − 1)1/2

α+ α′ − 1
.

Theorem 4 yields a regular relationship between the null limit distributions of the LR test statistics used

to test the geometric and exponential mixture hypotheses. The covariance structure E[G∞(α)G∞(α′)] is

identical to that obtained by Cho and White (2010, theorem 1(i)) as the null limit distribution of the LR test

statistic used to test the exponential mixture hypothesis. Therefore, if the grouping bin size ∆ is sufficiently

small, the null limit distribution given by Cho and White (2010) can approximate that of the LR test statistic

used to test the geometric mixture hypothesis.

The reasoning behind Theorem 4 is straightforward. As ω approaches infinity, the probability mass gen-

erated by grouping continuous data decreases, such that the CDF of Y ω
t approaches that of the exponential

random variable. As a result, the asymptotic critical value of the LR test statistic used to test the geometric

mixture hypothesis approaches that of the LR test statistic used to test the exponential mixture hypothesis.

Theorem 4 is comparable to the quasi-maximum likelihood (QML) estimation of grouped exponential

random variables. Ryu (1995) analyzes the QML estimator obtained by maximizing the quasi-likelihood

function of an exponential distribution and grouped exponential random observations. The QML estimator

is not consistent for the parameters in the DGP, although the bias is asymptotically negligible if the size of

bin ∆ is sufficiently small. This result agrees with that in Theorem 4.

Nevertheless, a regular interrelationship between the null limit distributions of the LR test statistics is not

established when the conditioning variable Xt exists. By estimating the unknown parameter β∗ in h(Xt;β∗),

it introduces an estimation error that modifies the asymptotic covariance structure of the Gaussian process

G∞(·). Specifically, when the regularity conditions hold such that we can apply Lebesgue’s dominated

convergence theorem, it follows that

lim
ω→∞

ρω(α, α′) =
(α− 1)(α′ − 1)

α+ α′ − 1
− (α− 1)(α′ − 1)

αα′
B′∞C−1

∞ B∞,

where

B∞ ≡ E

 1

∇β lnh(Xt;β∗)

 and

C∞ ≡ E

 1 ∇′β lnh(Xt;β∗)

∇β lnh(Xt;β∗) ∇β lnh(Xt;β∗)∇′β lnh(Xt;β∗)

 .
Note that this limit covariance structure leads to a different correlation structure that of Cho and White

(2010, theorem 1(ii)), who derive the same null limit distribution for the LR test statistic, irrespective of the
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existence of the conditioning variable Xt. This implies that their null limit distribution cannot be obtained

by lim∞ LRω(A).

3 Monte Carlo Experiments

3.1 Testing Using the Weighted Bootstrap Method

In this section, we conduct Monte Carlo experiments to examine the level and power properties of the LR

test statistic.

For our experiments, we consider the following DGP and model conditions. First, for the level property,

we specifically consider the following DGPs:

• DGP I: Yt ∼ IID G[1− exp{−1
2}];

• DGP II: Yt|Xt ∼ IID G[1− exp{−1 + exp[− exp(Xt)]}],

where Xt ∼ IID N(0, 1), and G(p∗) denotes the geometric distribution with parameter p∗, such that if

Yt ∼ G(p∗) then P (Yt = 0) = p∗.

Second, for these DGPs, we estimate the following models, respectively:

•Model I: πG[1− exp{−α1δ∗}] + (1− π)G[1− exp{−α2δ∗}];

•Model II:

πG[1− exp{−α1δ∗[1− exp(− exp(βXt))]}] + (1− π)G[1− exp{−α2δ∗[1− exp(− exp(βXt))]}],

where we consider two different parameter spaces for α1 ≡ δ1/δ∗ and α2 ≡ δ2/δ∗, namely,A1 ≡ [3/4, 5/4]

and A2 ≡ [3/4, 6/4]. We conduct the experiments by estimating Models I and II using the observations

generated by DGPs I and II, respectively. We implement the weighted bootstrap method described in Section

2.2.1 to examine the performance of the LR test statistic.

Remarks are warranted in implementing this experiment. First, the values of δ∗ are 0.5 and 1.0 for Model

I and II, respectively. However, they are unknown, α1 and α2 are not obtained directly. Instead, we estimate

δ∗ using the null model, denoting it as δ̂on and letting α1 and α2 be δ1/δ̂on and δ2/δ̂on, respectively. For a

finite sample size, A1 and A2 are not estimated precisely by this estimate, but the uncertainty conveyed by

this estimate disappears as the sample size n tends to infinity.

Second, because DGP I and Model I do not contain conditioning variables, we can also test the mix-

ture hypothesis using the methodology of Cho and Han (2009). We compare the performance of the LR

12



test statistic using the weighted bootstrap method with that of their methodology. Theorem 2 of Cho and

Han (2009) shows that the asymptotic distribution of the LR test statistic can be obtained consistently by

simulating

L̂Rm(A) ≡ sup
α∈A

max[0, Ĝm(α)]2

many times, where

Ĝm(α) ≡
{

(1− p̂on)− [1− p̂on(α)]2

(1− p̂on)

}1/2 m∑
k=0

{
[1− p̂on(α)]√

1− p̂on

}k
Zk,

p̂on ≡ 1− exp{−δ̂on}, p̂on(α) ≡ 1− exp{−αδ̂on}, and Zk ∼ IID N(0, 1). For our comparison, we let m

be 50 and denote the LR test statistic evaluated by L̂R50(A) as LR?n(A).

Table 2 reports the finite sample level properties of the LR test statistic. We summarize these properties

as follows.

(1) As the sample size n increases, the empirical levels approach the nominal levels (1%, 5%, and 10%).

This feature is observed when applying both the weighted bootstrap method and the asymptotic critical

values of Cho and Han (2009), implying that they are both asymptotically valid testing procedures

under the null hypothesis.

(2) The empirical rejection rates obtained from the weighted bootstrap method are similar to those ob-

tained from the asymptotic critical values of Cho and Han (2009). This feature implies that applying

the weighted bootstrap method may be more appealing because it is applicable even when condition-

ing variables exist in the model.

(3) If the parameter space A is small, there is a tendency for the LR test statistic to yield more precise

nominal levels. That is, the empirical rejection rate from A1 is closer to the nominal level than that

from A2. Therefore, choosing a smaller parameter space can reduce finite sample level distortions.

Third, we consider the following DGPs for the power properties of the LR test statistic:

• DGP III: Yt ∼ IID 1
2G[1− exp{−0.3}] + 1

2G[1− exp{−0.7}];

• DGP IV: Yt|Xt ∼ IID G[1− exp{1− exp[− exp(Xt)]}];

• DGP V: Yt|(Xt, Zt) ∼ IID G[1− exp{− exp(Zt +Xt)}]; and

• DGP VI: Yt|Xt ∼ IID 1
2G
[
1− exp

{
− exp

(
−2

7 +Xt

)}]
+ 1

2G
[
1− exp

{
− exp

(
5
7 +Xt

)}]
,

where (Xt, Zt)
′ ∼ IID N(0, I2). DGPs III and IV are estimated using Model I. We examine these DGPs

to compare the performance of the LR test statistic evaluated by the weighted bootstrap method and the

13



asymptotic critical values of Cho and Han (2009). We estimate Model II using the observations generated

from DGPs V and VI. As noted above, we cannot obtain the asymptotic critical values for this model because

the marginal distribution of Xt is assumed to be unknown. Here, Model I and Model II are misspecified for

DGP IV and DGPs V and VI, respectively.

We report the finite sample properties of the LR test statistic in Table 3. These properties are summarized

as follows:

(1) The unobserved heterogeneity is consistently detected by the LR test statistic. As the sample size n

increases, the empirical rejection rates approach unity for every case under consideration.

(2) For DGPs III and IV, the LR test statistics using the weighted bootstrap method have similar power

patterns to the LR test statistic evaluated by the asymptotic critical values of Cho an Han (2009).

(3) Even when the distributional assumption of unobserved heterogeneity is incorrect, it is consistently

detected by the LR test statistic. However, this does not necessarily imply that the LR test statistic

is able to detect any distributional misspecification. As mentioned above, Cho and White (2008)

consider a set of conditions under which the LR test statistic is able to detect unobserved heterogeneity

consistently. Unless their conditions are met, the LR test may not be consistent for the unobserved

heterogeneity.

3.2 Testing Using the Approximated Critical Values

In this section, we conduct a Monte Carlo simulation to examine how the empirical distribution of the LR

test statistic is affected by letting the grouping bin size ∆ converge to zero. According to Theorem 4, if

ω →∞, the empirical null limit distribution of the LR test statistic approaches that of the LR statistic used

to test the exponential mixture hypothesis. We verify this property by means of a simulation.

We proceed with our experiments in the following order. First, we consider the following eight DGPs:

for ω = 0.1, 0.2, 5.0, and 10.0,

• DGP I∗: Y ω
t ∼ IID G[1− exp{−1/(2ω)}].

Second, for each ω, we compute the LR test statistic using the observations generated by DGP I∗ and

Models 0∗ and I∗, where

•Model 0∗: G[1− exp(−δ/ω)];

•Model I∗: πG[1− exp(−δ1/ω)] + (1− π)G[1− exp(−δ2/ω)].
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For each ω, the total number of observations is 20,000. We also consider two parameter spaces for α1 and

α2: A1 and A2. Therefore, we calculate eight (2 parameter spaces × 4 ω’s) LR test statistics for each

experiment.

Third, we obtain the null limit distribution of the LR test statistic that tests the exponential mixture

hypothesis in the study of Cho and White (2010, theorem 2(i)). Following their methodology, we generate

the null limit distribution.

Finally, we compare the empirical distributions of the our LR test statistics with the null limit distribution

of Cho and White (2010, theorem 2(i)).

The results of the experiments are shown in Table 4 and Figure 1. Table 4 reports the empirical rejection

rates evaluated using the null limit distribution of Cho and White (2010, theorem 2(i)). Figure 1 shows

their null limit distribution, along with the empirical distributions of the LR test statistics. The results are

summarized as follows:

(1) As ω increases, the empirical distributions of the LR test statistics are well approximated by the null

limit distribution. For each ω = 0.5, 2.0, and 10.0, the overall empirical distributional shapes are close

to that of the null limit distribution. However, if ω = 0.1, the empirical distribution of the LR test

statistic is quite different from that of the null limit distribution. This implies that for a moderately

large ω, the null limit distribution can be usefully exploited to test the geometric mixture hypothesis.

(2) If the associated parameter space A is small, the null limit distribution better approximates the empir-

ical distributions of the LR test statistics. Note that the empirical distribution of the LR test statistic

combined with A1 is better approximated by the null limit distribution than that combined with A2.

This indicates that the intended approximation is more useful if the LR test statistic is combined with

a smaller parameter space of A.

4 Conclusion

This study examines the mixture hypothesis of conditional geometric distributions using a likelihood ratio

(LR) test statistic that extends that used for an unconditional geometric distribution by Cho and Han (2009).

We derive the null limit distribution of the LR test statistic and examine its power performance. In addition,

we examine the interrelationship between the LR test statistics used to test the geometric and exponential

mixture hypotheses. We also examine the performance of the LR test statistics under various circumstances

and confirm the main claims of the study using Monte Carlo simulations.
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Appendix 1: Assumptions

Here, we apply the regularity conditions in Cho and White (2010) to our data context and provide regularities

for the claims in the text.

Assumption 1. (i) {(Y ω
t ,X′t)′} is a strictly stationary geometric β-mixing process defined on (Ω,F ,P) with

β-mixing coefficients βτ ≤ cρτ , for some c > 0 and ρ ∈ [0, 1), where Y ω
t is N-valued, Xt is Rk−valued,

k ∈ N, and Xt does not contain a constant term;

(ii) For t = 1, 2, . . ., conditional on Xt, Y ω
t has the following mass: for some (π∗,β∗, δ

ω
1∗, δ

ω
2∗) ∈

Rd × R+ × R+ (d ∈ N),

mω(y|Xt;π∗,β∗, δω1∗, δω2∗) ≡ π∗gωo (y|Xt;β∗, δω1∗) + (1− π∗)gωo (y|Xt;β∗, δω2∗),

where gωo (y|Xt;β∗, δω∗ ) ≡ [1−exp{−δω∗ h(Xt;β∗)}]×[exp{−δω∗ h(Xt;β∗)}]y−1; and for each β ∈ B ⊂ Rd,

h( · ;β) : Rk → R+ is a Borel measurable function;

(iii) mω( · |Xt;π∗,β∗, δω1∗, δω2∗) = p( · |Xt, Y ω
t−1,Xt−2, Y

ω
t−2, · · · ) almost surely, where p( · |Xt, Y ω

t−1,

Xt−2, Y
ω
t−2, · · · ) is the conditional probability mass function of Y ω

t given Xt, Y ω
t−1, Xt−2, Y ω

t−2, . . .. �

Assumption 2. (i) h(Xt; · ) is four-times continuously differentiable almost surely;

(ii) (π∗,β∗, δ
ω
1∗, δ

ω
2∗) ∈ [0, 1]×B×D×D, and B×D×D is a convex compact subset of Rd×R+×R+.

�

For each α and α′ in A, we let

Aω(α, α′) ≡


E[Mω

t (α)Mω
t (α′)]− 1 E[Mω

t (α)Wω
t ] E[Mω

t (α)S′t]

E[Wω
t M

ω
t (α′)] E[Wω

t
2] E[Wω

t Sωt
′]

E[SωtMω
t (α′)] E[SωtWω

t ] E[Sωt Sωt
′]

 ,
where Wω

t ≡ ∇2
δg
ω
o (Y ω

t |Xt;β∗, δ
ω
∗ )/gωo (Y ω

t |Xt;β∗, δ
ω
∗ ), for each α ∈ A, Mω

t (α) ≡ gωo (Y ω
t |Xt;β∗, αδ

ω
∗ )

/gωo (Y ω
t |Xt;β∗, δ

ω
∗ ), and Sωt ≡ ∇(β,δω)g

ω
o (Y ω

t |Xt;β∗, δ
ω
∗ ) /gωo (Y ω

t |Xt;β∗, δ
ω
∗ ). Furthermore, we also let

Bω(π∗,β∗, α1∗, α2∗) ≡ E[∇(π,β,α1,α2)`
ω
t (π∗,β∗, α1∗, α2∗)∇′(π,β,α1,α2)`

ω
t (π∗,β∗, α1∗, α2∗)],

where we let `ωt (π,β, α1, α2) ≡ ln[πgωo (Y ω
t |Xt;β, α1ζ

ω
o ) + (1−π)gωo (Y ω

t |Xt;β, α2ζ
ω
o )], A ≡ {α : αζωo ∈

D}, and ζωo is defined as in Assumption 3.

Assumption 3. (i) (βo, ζ
ω
o ) ≡ arg max(β,δω)∈B×D E[ln gωo (Y ω

t |Xt;β, δω)] exists and is unique, and for

each (π,β, α1, α2) ∈ [0, 1]× B×A×A, E[`ωt (π,β, α1, α2)] exists and is finite;

16



(ii) For every (π∗,β∗, α1∗, α2∗), λmin{Bω(π∗,β∗, α1∗, α2∗)} ≥ 0 such that

(a) if λmin{Bω(π∗,β∗, α1∗, α2∗)} > 0, λmax{Bω(π∗,β∗, α1∗, α2∗)} <∞;

(b) if λmin{Bω(π∗,β∗, α1∗, α2∗)} = 0, for any ε > 0, λmin{Aω(π∗,β∗, α1∗, α2∗ )} > 0 and λmax{Aω(

α, α)} <∞ uniformly in α ∈ A(ε) ≡ {α ∈ A : |α− 1| ≥ ε}, where λmin(·) and λmax(·) are the minimum

and maximum eigenvalues of the given matrix, respectively. �

Assumption 4. There exists a sequence of strictly stationary and ergodic random variables {Mt} such that

for some ε > 0,

(a) E[M1+ε
t ] < ∆ <∞;

(b) sup(π,β,α1,α2) |∇j`ωt (π,β, α1, α2)∇k`ωt (π,β, α1, α2)| ≤Mt;

(c) sup(π,β,α1,α2) |∇j,k`ωt (π,β, α1, α2)| ≤Mt;

(d) |∇i1gωo (Y ω
t |Xt;β∗, δω∗ )/gωo (Y ω

t | Xt;β∗, δω∗ )|4 ≤Mt;

(e) |∇i1∇i2gωo (Y ω
t |Xt;β∗, δω∗ )/gωo (Y ω

t |Xt;β∗, δω∗ )|2 ≤Mt;

(f) |∇i1∇i2∇i3gωo (Y ω
t |Xt;β∗, δω∗ )/gωo (Y ω

t |Xt;β∗, δω∗ )|2 ≤Mt; and

(g) sup(β,δ) |∇i1∇i2∇i3∇i4gωo (Y ω
t |Xt;β, δω)/gωo (Y ω

t |Xt;β, δω)| ≤ Mt, where j, k ∈ {π, α1, α2, β1,

· · · , βd} and i1, · · · , i4 ∈ {δ, β1, · · · , βd}. �

Appendix 2: Proofs

Proof of Theorem 1: The proof of Theorem 1 is completed by letting ω = 1.0 in the proof of Theorem 3.

�

We provide the following supplementary lemma to prove the consistency of the LR test.

Lemma 1. If Assumptions 1 to 4 are satisfied, sup(π,β,α1,α2) |n−1
∑
`ωt (π,β, α1, α2) − E[`ωt (π,β, α1,

α2)]| a.s.→ 0. �

Proof of Lemma 1: First, note that `ωt (·) is differentiable by Assumption 2(i). Thus, it is continuous on

[0, 1] × B × A × A, which is a compact and convex subset of R+ × Rd × R+ × R+. Second, for some

positive, stationary, and ergodic random variable,Mt, it follows that ‖∇(π,β,α1,α2)`
ω
t (π,β, α1, α2)‖∞ < Mt

by Assumption 4. Finally, we can, therefore, apply Ranga Rao’s (1962) uniform law of large numbers to

{n−1
∑
`ωt ( · )}. This completes the proof. �

Proof of Theorem 2: We apply the proof of theorem 3 in Cho and White (2010). The Kullback–Leibler

information criterion implies that E[ln ga(Yt|Xt; π∗,β∗, α1∗, α2∗)] > E[ln go(Yt|Xt;βo, ζo)] under Ha,

17



where ζo = ζωo such that ω = 1. Therefore, Lemma A implies that there exists n∗(ε) with probability one

such that if n ≥ n∗(ε), then |G1n| < ε, |G2n| < ε, |H1n| < ε, and |H2n| < ε, where

G1n ≡ n−1
∑{

ln[ga(Yt|Xt; π̂n, β̂n, α̂1n, α̂2n)]− ln[ga(Yt|Xt;π∗,β∗, α1∗, α2∗)]
}

;

G2n ≡ n−1
∑

ln[ga(Yt|Xt;π∗,β∗, α1∗, α2∗)]− E{ln[ga(Yt|Xt;π∗,β∗, α1∗, α2∗)]};

H1n ≡ n−1
∑{

ln[go(Yt|Xt; β̂on, δ̂on)]− ln[go(Yt|Xt;βo, ζo)]
}

; and

H2n ≡ n−1
∑

ln[go(Yt|Xt;βo, ζo)]− E{ln[go(Yt|Xt;βo, ζo)]}.

From this, it follows that |(G1n +G2n)− (H1n +H2n)| ≤ η, where η ≡ 4ε. If we let

Λ̂n ≡ n−1
∑{

ln[ga(Yt|Xt; π̂n, β̂n, α̂1n, α̂2n)]− ln[go(Yt|Xt; β̂on, δ̂on)]
}

and

Λ∗ ≡ E{ln[ga(Yt|Xt;π∗,β∗, α1∗, α2∗)]} − E{ln[go(Yt|Xt;βo, ζo)]},

then we obtain Λ∗−η ≤ Λ̂n ≤ Λ∗+η. Thus, for some δ1 ∈ (0,Λ∗−η) and δ2 ∈ (Λ∗+η,∞), if n > n∗(ε),

then δ1 < Λ̂n < δ2. From LRn(A) = 2nΛ̂n, we find that LRn(A) = Op(n), but not op(n). This completes

the proof. �

Proof of Theorem 3: We derive the desired weak convergence of the LR statistic by verifying the conditions

of theorem 6(a) of Cho and White (2007). First, our Assumption 1 is sufficient for their assumption A1;

second, our Assumptions 1(ii) and 2 satisfy their assumption A2; third, Assumption 4(i) is sufficient for

their assumptions A3 and A4; fourth, their assumptions A5(ii and iii) are satisfied by our Assumption 4;

and finally, our Assumption 4 relaxes their A6(iv) because it is not necessary to impose the positive definite

matrix assumption on A(α, α′) for every (α, α′)(6= (1, 1)) to obtain the desired result. Therefore, the

desired weak convergence follows from their theorem 6(a).

Next, we derive the covariance structure (5) using the formula in lemma 1(b) of Cho and White (2007).

First, note that

Mω
t (α) =

[
1−Qt(α/ω)

1−Qt(1/ω)

] [
Qt(1/ω)

Qt(α/ω)

]Y ω
t

,

so that

E[Mω
t (α)Mω

t (α′)|Xt]− 1 =

[
[Qt(α/ω)− 1][Qt(α

′/ω)− 1]

Qt(1/ω)− 1

] ∞∑
y=1

[
Qt(1/ω)

Qt(α/ω)Qt(α′/ω)

]y
− 1

=
[Qt(1/ω)−Qt(α/ω)][Qt(1/ω)−Qt(α′/ω)]

[Qt(1/ω)− 1][Qt(α/ω)Qt(α′/ω)−Qt(1/ω)]
,

and

E[Mω
t (α)Mω

t (α′)]− 1 = Aω(α, α′) (9)

18



using the law of iterated expectation: E[Mω
t (α)Mω

t (α′)] = E[E[Mω
t (α)Mω

t (α′)| Xt]]. Here, we can apply

the infinite geometric sum formula because inf A > 1/2. Note that for any α and α′ ∈ A, Qt(1/ω)/{Qt(α/

ω)Qt(α
′/ω)} = exp[(1− α− α′)δω∗ h(Xt;β∗)] ∈ (0, 1) because δω∗ > 0 and h( · ;β∗) > 0 by Assumption

1(ii).

Second, we consider E[Mω
t (α)Sωt ]. For each α,

Sωt = δω∗

[
Qt(1/ω)

Qt(1/ω)− 1
− Y ω

t

]
Dω
t ,

where

Dω
t ≡

 h(Xt;β∗)

∇βh(Xt;β∗)

 ,
so that

E[Mω
t (α)Sωt |Xt] = δω∗ [Qt(α/ω)− 1]

∞∑
y=1

[
1

Qt(α/ω)

]y [ Qt(1/ω)

Qt(1/ω)− 1
− y
]

Dω
t

=
δω∗ [Qt(α/ω)−Qt(1/ω)]

[Qt(1/ω)− 1][Qt(α/ω)− 1]
Dω
t .

Here, we can apply the infinite geometric sum formula because for each α ∈ A, 1/Qt(α/ω) ∈ (0, 1). This

implies that

E[Mω
t (α)Sωt ] = E

 δω∗ [Qt(α/ω)−Qt(1/ω)]

[Qt(1/ω)− 1][Qt(α/ω)− 1]

 h(Xt;β∗)

∇βh(Xt;β∗)


by the law of iterated expectation, and that

E[Mω
t (α)Sωt ] = Bω(α). (10)

Third, we consider E[Sωt Sωt
′]. Note that

E[Sωt Sωt
′|Xt] = (δω∗ )2[Qt(1/ω)− 1]

∞∑
y=1

[
Qt(1/ω)

Qt(1/ω)− 1
− y
]2 [ 1

Qt(1/ω)

]y
Dω
t Dω

t
′

=
(δω∗ )2Qt(1/ω)

[Qt(1/ω)− 1]2
Dω
t Dω

t
′.

This implies that

E[Sωt Sωt
′] = E

 (δω∗ )2Qt(1/ω)

[Qt(1/ω)− 1]2

 h(Xt;β∗)
2 h(Xt;β∗)∇′βh(Xt;β∗)

h(Xt;β∗)∇βh(Xt;β∗) ∇βh(Xt;β∗)∇′βh(Xt;β∗)


by the law of iterated expectation, so that

E[Sωt Sωt
′] = Cω. (11)
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By substituting (9), (10), and (11) into

ρω(α, α′) ≡ E[Mω
t (α)Mω

t (α′)]− 1− E[Mω
t (α)St]′{E[StS′t]}−1E[Mω

t (α′)St]

in lemma 1(b) of Cho and White (2007), we obtain that ρω(α, α′) ≡ Aω(α, α′) − B′ωC−1
ω Bω(α′). This is

the desired covariance structure (5) and completes the proof. �

Proof of Theorem 4: From the given assumption that Xt is absent, Qt(1/ω) = exp(δ∗/ω) and Qt(α/ω) =

exp(αδ∗/ω). Thus,

Aω(α, α′) =
[exp(αδ∗/ω)− exp(δ∗/ω)][exp(α′δ∗/ω)− exp(δ∗/ω)]

[exp(δ∗/ω)− 1][exp((α+ α′)δ∗/ω)− exp(δ∗/ω)]

ω→∞−→ (α− 1)(α′ − 1)

α+ α′ − 1
;

Bω(α) =
δ∗[exp(αδ∗/ω)− exp(δ∗/ω)]

ω[exp(δ∗/ω)− 1][exp(αδ∗/ω)− 1]

ω→∞−→
(
α− 1

α

)
Cω ≡

δ2
∗Qt(1/ω)

ω2[Qt(1/ω)− 1]2
ω→∞−→ 1.

Thus, it follows that

lim
ω→∞

ρω(α, α′) =
(α− 1)(α′ − 1)

α+ α′ − 1
−
(
α− 1

α

)(
α′ − 1

α′

)
=

(α− 1)2(α′ − 1)2

αα′(α+ α′ − 1)

and

lim
ω→∞

ρω(α, α′)√
ρω(α, α)

√
ρω(α′, α′)

=
(2α− 1)1/2(2α′ − 1)1/2

α+ α′ − 1
.

This completes the proof. �
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Authors Mixtures

Chernoff and Lander (1995) Unconditional binomial distributions

Chen and Chen (2001) Unconditional normal and Poisson distributions

Liu, Pasarica and Shao (2003) Unconditional gamma distributions

Cho and White (2007) Conditional Normal distributions

Cho and Han (2009) Unconditional geometric distributions

Cho and White (2010) Conditional Exponential and Weibull distreibutions

Table 1: LITERATURE FOR TESTING THE MIXTURE HYPOTHESIS. This table provides the literature providing the

null limit distribution of statistics testing the mixture hypothesis.
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DGP: Yt ∼ IID G[1− exp{− 1
2}]

Model 0 versus Model I

Statistics Levels \ n 500 1,000 2,000 5,000 10,000 20,000

1% 0.30 0.50 0.65 1.00 0.90 0.95

LRn(A1) 5% 2.05 3.20 3.45 3.80 3.95 4.05

10% 6.55 7.00 7.75 8.25 8.50 9.15

1% 0.80 0.90 0.80 0.90 1.10 0.75

LRn(A2) 5% 3.05 3.85 4.60 4.30 4.80 4.40

10% 7.35 7.65 8.65 8.45 8.95 8.50

1% 0.25 0.65 0.60 1.10 0.90 1.05

LR?
n(A1) 5% 2.15 3.10 4.05 4.35 4.40 4.65

10% 6.30 7.20 8.30 8.55 9.25 9.95

1% 0.70 0.75 0.80 0.60 1.25 0.90

LR?
n(A2) 5% 2.75 3.25 4.25 4.05 4.65 4.10

10% 5.90 6.55 8.10 8.05 8.55 8.40

DGP: Yt|Xt ∼ IID G[1− exp{−1 + exp[− exp(Xt)]}]

Model 0′ versus Model II

Statistics Levels \ n 500 1,000 2,000 5,000 10,000 20,000

1% 0.20 0.30 1.10 1.05 1.00 1.10

LRn(A1) 5% 2.80 4.45 5.50 5.55 5.10 5.45

10% 8.20 9.35 11.95 11.40 9.85 11.45

1% 0.70 0.85 1.15 0.85 1.30 1.70

LRn(A2) 5% 4.30 4.15 5.10 6.25 6.70 6.70

10% 8.75 8.95 10.40 12.40 12.75 12.95

Table 2: LEVELS OF THE LR TEST STATISTICS (NUMBER OF EXPERIMENT REPETITIONS: 2,000).

This table shows the finite sample properties of the LR test statistics under the DGP/model assumptions and in the absence of

unobserved heterogeneity. Note that the empirical rejection rates are more or less similar to the nominal significance levels.

Model 0 indicates G[1 − exp{−δ1}], Model I indicates πG[1 − exp{−δ1}] + (1 − π)G[1 − exp{−δ2}], Model 0′ indicates

G[1 − exp{1 − exp[−δ1 exp(βXt)]}], and Model II indicates πG[1 − exp{−δ1(1 − exp[− exp(βXt)])}] + (1 − π)G[1 −

exp{−δ2(1 − exp[− exp(βXt)])}]. Furthermore, we let Xt ∼ IID N(0, 1), A1 ≡ [3/4, 5/4] and A2 ≡ [3/4, 6/4]. LRn(A)

and LR?
n(A) denotes the LR test statistics evaluated by the weighted bootstrap and the methodologyly in Cho and Han (2009),

respectively.
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DGP: Yt ∼ IID 1
2G[1− exp{−0.3}] + 1

2G[1− exp{−0.7}]

Model 0 versus Model I

Statistics \ n 50 100 200 500 1,000 2,000

LRn(A1) 0.55 3.75 18.40 73.20 98.80 100.0

LRn(A2) 3.25 10.35 29.30 79.80 98.75 100.0

LR?
n(A1) 0.45 4.00 19.55 77.45 98.90 100.0

LR?
n(A2) 2.65 9.25 27.50 80.25 98.75 100.0

DGP: Yt|Xt ∼ IID G[1− exp{1− exp[− exp(Xt)]}]

Model 0 versus Model I

Statistics \ n 50 100 200 500 1,000 2,000

LRn(A1) 12.10 48.15 90.55 100.0 100.0 100.0

LRn(A2) 21.40 63.40 93.40 100.0 100.0 100.0

LR?
n(A1) 12.00 48.50 91.70 100.0 100.0 100.0

LR?
n(A2) 19.05 63.10 93.80 100.0 100.0 100.0

DGP: Yt|(Xt, Zt) ∼ IID G[1− exp{− exp(Zt +Xt)}]

Model 0′ versus Model II

Statistics \ n 50 100 200 500 1,000 2,000

LRn(A1) 6.00 22.05 56.40 92.65 99.90 100.0

LRn(A2) 11.90 35.85 69.05 97.40 99.95 100.0

DGP: Yt|Xt ∼ IID 1
2G[1− exp{− exp(− 2

7 +Xt)}] + 1
2G[1− exp{− exp( 5

7 +Xt)}]

Model 0′ versus Model II

Statistics \ n 50 100 200 500 1,000 2,000

LRn(A1) 0.15 1.55 8.30 32.70 58.75 84.90

LRn(A2) 1.95 6.10 16.70 36.90 63.50 87.40

Table 3: LEVELS OF THE LR TEST STATISTICS (NUMBER OF EXPERIMENT REPETITIONS: 2,000;

LEVEL OF SIGNIFICANCE: 5%). This table shows the finite sample properties of the LR test statistics under the DGP/model

assumptions and in the presence of unobserved heterogeneity. Note that the empirical rejection rates converge to 100% as the sample

size increases. Model 0 indicates G[1−exp{−δ1}], Model I indicates πG[1−exp{−δ1}]+(1−π)G[1−exp{−δ2}], Model 0′ in-

dicates G[1−exp{1−exp[−δ1 exp(βXt)]}], and Model II indicates πG[1−exp{−δ1(1−exp[− exp(βXt)])}]+(1−π)G[1−

exp{−δ2(1 − exp[− exp(βXt)])}]. Furthermore, we let (Xt, Zt)
′ ∼ IID N(0, I2), A1 ≡ [3/4, 5/4] and A2 ≡ [3/4, 6/4].

LRn(A) and LR?
n(A) denotes the LR test statistics evaluated by the weighted bootstrap and the methodology in Cho and Han

(2009), respectively.
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Model 0∗ versus Model I∗

Parameter Space Levels \ ω 0.10 0.50 2.00 10.00

1% 0.35 0.40 0.85 0.55

A1 ≡ [3/4, 5/4] 5% 1.85 3.15 3.65 3.50

10% 5.00 7.60 7.15 8.05

1% 0.35 0.80 0.90 0.55

A2 ≡ [3/4, 6/4] 5% 2.70 3.80 4.30 3.80

10% 5.90 6.90 7.55 8.05

Table 4: LEVELS OF THE LR TEST STATISTICS (Number of Experiment Repetitions: 2,000; Number of

Observations: 20,000). This tables shows the empirical rejection rates of the LR test statistic when it is evaluated by the

null limit distribution in Cho and White (2010). Note that the nominal levels of significance (1%, 5%, and 10%) get close to the

empirical rejection rates, as the grouping bin size (∆ ≡ 1/ω) reduces to zero. Model 0∗ indicates G[1− exp{−δ/ω}], and Model

I∗ indicates πG[1− exp{−δ1/ω}] + (1− π)G[1− exp{−δ2/ω}].
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LRn(A1)

LRn(A2)

Figure 1: EMPIRICAL AND ASYMPTOTIC NULL LIMIT DISTRIBUTIONS OF THE LR TEST STATISTICS

(NUMBER OF EXPERIMENT REPETITIONS: 2,000; NUMBER OF OBSERVATIONS: 20,000). The figures

show the empirical distributions of the LR test statistics and the null limit distributions in Cho and White (2010). Note that the

empirical null distributions of the LR test statistics approache the null limit distributions, as the grouping bin size (∆ ≡ 1/ω)

reduces to zero. DGP: Y ω
t ∼ IID G[1 − exp{−1/(2ω)}], and the LR test statistic tests Model 0∗ versus Model I∗. Here,

A1 ≡ [3/4, 5/4] and A2 ≡ [3/4, 6/4].
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