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1 Introduction

It is popular to test linearity of time series against the smooth transition autoregressive (STAR) model as a first step of

building nonlinear STAR models. Luukkonen, Saikkonen, and Teräsvirta (1988), Teräsvirta (1994) and Granger and

Teräsvirta (1993) among others suggest to test linearity using the Lagrange multiplier (LM) test statistic based upon

the STAR model, and their LM test statistics are popularly used for empirical applications.

On the other hand, the LM test statistic does not comprehensively test for the nonlinearity entailed by the STAR

model. As we detail below, the STAR model violates the linearity condition in two different ways, and the LM

statistic tests for only one of the two violations to avoid Davies’s (1977, 1987) identification problem and obtain a

straightforward null limit distribution of the LM test statistic. Despite its handy aspect for applications, the LM test

statistic does not entirely test for the nonlinearity involved with the STAR model, and the need for comprehensive

testing is a natural consequence of using the STAR model. The main goal of the current study is thus to develop a

testing procedure that tests for the alternative nonlinearity in two different ways and combines the testing results into

a single test statistic. We achieve this goal by explicitly accommodating Davies’s (1977, 1987) identification problem

and delivering a methodology to obtain the null limit critical values of the test statistic.

This goal is achieved by applying the results in the previous literature to the STAR model. This literature exam-

ines testing linearity using the artificial neural network framework. Cho, Ishida, and White (2011, 2014), Cho and

Ishida (2012), White and Cho (2012), and Baek, Cho, and Phillips (2015), among others, study testing for neglected

nonlinearity using analytic functions and note that the null of linearity can arise in two or three different ways in their

model framework as it does in the STAR model. They call this feature the twofold or trifold identification problem

and propose a quasi-likelihood ratio (QLR) test statistic for the problem. We transform their approach to the STAR

framework and develop a testing procedure that is readily available for applications.

An encouraging feature of using the QLR test statistic arises from the fact that it is an omnibus test statistic against

arbitrary nonlinearity. As Stichcombe and White (1998) point out, the model specification statistic is generically

comprehensively revealing if it is constructed by using analytic functions and testing their effect on the specified

model as is the case for the QLR test statistic. Many STAR models such as the exponential STAR (ESTAR) and

logistic STAR (LSTAR) models contain analytic nonlinear components, and they render the QLR test statistic omnibus

against neglected nonlinearity.

Despite the parallel structure of the STAR model-based testing to that of the artificial neural network, the analysis

of the QLR test statistic needs to be generalized in order to make the QLR test statistic applicable in the STAR

framework. As an example, Cho, Ishida, and White (2011, 2014) characterize the null limit distribution of the QLR

test statistic as a functional of a univariate Gaussian stochastic process. This limit distribution cannot, however, be

simply applied for STAR models, because, as it turns out, a multidimensional Gaussian stochastic process is required

for the null limit distribution. The STAR model has a unique feature that prevents the researcher from applying the

artificial neural network approach to the STAR model. We shall generalize the approach based upon the artificial

neural network to fit the complexity of the STAR model.

The empirical contribution of this paper is to apply the QLR test statistic to real economic data and demonstrate
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its usefulness relative to the LM test statistic. By doing so, our aim is to provide evidence that the QLR and LM test

statistics are complementary to each other. For this goal, we examine three well-known empirical examples in the

literature using the LM statistic: the German money demand, the US unemployment rate, and the annual growth rate

of German industrial production that have been previously studied by Lütkepohl, Teräsvirta, and Wolters (1999), van

Dijk, Teräsvirta, and Franses (2002), and Teräsvirta (1994), respectively. Using these data sets and extending them,

we illustrate the use of the QLR test statistic along with the LM test statistic and find nonlinear aspects in the data that

could not be found by the LM or the QLR statistic alone.

The plan of this paper is as follows. In Section 2, we derive the null limit distribution of the QLR test statistic

by resolving the twofold identification problem. We do this by generalizing the approach developed for the artificial

neural network model. In Section 3, we apply our theory to the ESTAR and LSTAR models and demonstrate its

relevance. In this section we also report resuts on Monte Carlo simulations. In particular, we demonstrate how to

apply Hansens’s (1996) weighted bootstrap to the QLR test statistic. Section 4 contains applications of the QLR test

statistic to the German money demand, the US unemployment rate, and the annual growth rate of German industrial

production. The performances of the QLR and LM statistics are compared with each other. The detailed proofs of our

claims can be found in the Appendix.

Before proceeding, we provide some notation. A function mapping f : X 7→ Y is denoted by f(·), evaluated

derivatives such as f ′(x)|x=x∗ are written simply as f ′(x∗). We also let “an ⇒ a ” and “an
a.s.→ a” indicate “an

weakly converges to a” and “an almost surely converges to a,” respectively. The latter is occasionally denoted as

limn→∞ an
a.s.
= a.

2 Testing Linearity Using the STAR Model

In this section, we review the literature on testing linearity against STAR. We also consider the QLR test statistic and

derive its null limit distribution.

2.1 Motivation of Testing Linearity Using the STAR Model

The following STAR model of order p is popularly specified as a prediction model of a time-series data Yt (e.g.,

Teräsvirta, 1994; Granger and Teräsvirta, 1993):

M0 := {h0( · ;π, θ, γ, c) : (π, θ, γ) ∈ Π×Θ× Γ× C},

where h0(zt;π, θ, γ, c) := z′tπ + f(z̃′tα − c, γ)(z′tθ), zt := (1, z̃′t)
′ is a (p + 1) × 1 vector of regressors with a

transition variable z̃′tα. Here, z̃t := (yt−1, yt−2, . . . , yt−p)
′, and α := (0, . . . , 1, 0, . . . , 0)′ denotes a selection vector

chosen by the researcher. The other parameter vectors π := (π0, π1, . . . , πp)
′ and θ := (θ0, θ1, . . . , θp)

′ are the

mean transition parameters, and γ is used to describe the smooth transition from one extreme regime to the other.

Symbols Π, Θ, Γ, and C denote the parameter spaces of π, θ, γ, and c, respectively. The transition function f(·, γ)
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is a nonlinear, continuously differentiable, and uniformly bounded function. Here, we observe that the empirical

researcher often flexibly modifiesM0 by removing the constant from zt or adding other exogenous variables to zt.

As we see in the empirical section, empirical models are often specified using other dummy variables, so that there is

an additional exogenous variable in z̃t. Despite the fact that zt may be different from what we consider here, the null

limit distribution of the QLR test statistic is obtained similarly to the current study. So, we fix our ideas by proceeding

with our discussions withM0.

The most popular STAR models are the exponential smooth transition autoregressive (ESTAR) and logistic smooth

transition autoregressive (LSTAR) models. They are characterized by the exponential and logistic cumulative distri-

bution functions, respectively, and each of them displays different nonlinear patterns:

fE(z̃′tα− c, γ) := 1− exp(−γ(z̃′tα− c)2) and fL(z̃′tα− c, γ) := {1 + exp(−γ(z̃′tα− c)}−1,

where γ > 0 are the nonlinear functional forms exhibited by the ESTAR and LSTAR models, respectively. It is seen

from these expressions that the STAR model has a continuum of regimes defined by transition functions obtaining

values between 0 to 1. This aspect makes the model appealing for empirical analysis because the presence of multiple

regimes are often structural and attributed to the behaviour of economic agents. For more discussion on the STAR

model the reader is referred to van Dijk, Teräsvirta, and Franses (2002), Teräsvirta (1994), Granger and Teräsvirta

(1993), and Teräsvirta, Tjøstheim, and Granger (2010), among others.

This study focuses on testing linearity against STAR. The ESTAR and LSTAR models are specified by transform-

ing the exponential function that is analytic, so that it is generically comprehensively revealing for model misspecifi-

cation as pointed out by Stinchcombe and White (1998). Therefore, the estimated parameters in the transition function

become statistically significant such that the nonlinear component necessarily reduces the mean squared error of the

model, even when the assumed STAR model is misspecified. This fact implies that if the linear model is misspecified,

the mean square error obtained from the STAR models becomes smaller than that from the linear model, motivating

testing linearity hypothesis by comparing the estimated mean squared errors from the STAR and the linear model

nested in the STAR. The QLR test statistic is often motivated this way. This process delivers an omnibus testing

procedure for nonlinearity.

Similar arguments can be found in the previous literature. First, Cho, Ishida, and White (2011, 2014) and Baek,

Cho, and Phillips (2015) examine testing linearity using both analytic functions and power transformations. They test

linearity using the QLR test statistic and demonstrate usefulness of the test by Monte Carlo experiments. We take

advantage of this literature and apply the QLR statistic to testing linearity against STAR. We note, however, that in

the previous literature the QLR statistic is applied to testing linearity against artificial neural network models. In the

STAR case, the nonlinear functions are different from what they are when the alternative is an artificial neural network.

Because of this, the QLR test statistic against STAR exhibits power patterns different from those in Cho, Ishida, and

White (2011, 2014) and Baek, Cho, and Phillips (2015). Deriving the null limit distribution of the QLR test based

against STAR leads to generalizing the corresponding derivations in Cho, Ishida, and White (2011, 2014) and Baek,
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Cho, and Phillips (2015).

Luukkonen, Saikkonen, and Teräsvirta (1988), Teräsvirta (1994), Granger and Teräsvirta (1993), and Teräsvirta,

Tjøstheim, and Granger (2010), among others, examine the LM statistic of testing linearity against STAR. As we

discuss below, the LM test is defined to test one of the two hypotheses that characterize the linearity condition using

the STAR model, whereas the QLR test statistic is defined to handle the two hypotheses at the same time. This aspect

of the QLR test statistic extends the testing scope aimed by the LM test statistic, and below we illustrate how the QLR

and LM test statistics can complement each other using empirical examples.

2.2 DGP and QLR Test Statistic

In order to proceed, we make the following assumptions:

Assumption 1. {yt : t = 1, 2, . . .} is a strictly stationary and absolutely regular process defined on the complete prob-

ability space (Ω,F ,P), with E[|yt|] <∞ and mixing coefficient βτ such that for some ρ > 1,
∑∞
τ=1 τ

1/(ρ−1)βτ <∞.

�

Here, the mixing coefficient is defined as βτ := sups∈N E[supA∈F∞s+τ |P(A|Fs−∞)− P(A)|], where Fsτ is the σ-field

generated by (yt, . . . , yt+s). Many time series satisfy this condition, and the autoregressive process is one of them. It

is general enough to cover the stationary time series we are interested in.

We impose the following regular STAR model condition:

Assumption 2. Let f(z̃′tα, ·) : Γ 7→ [0, 1] be a non-polynomial analytic function with probability 1. Let Π ∈ Rp+1,

Θ ∈ Rp+1, and Γ ∈ R be non-empty convex and compact sets such that 0 ∈ Γ. Let h(zt;π, θ, γ) := z′tπ+{f(z̃′tα, γ)−

f(z̃′tα, 0)}(z′tθ), and letM := {h( · ;π, θ, γ) : (π, θ, γ) ∈ Π×Θ× Γ} be the model specified for E[yt|z̃t]. �

Note thatM differs fromM0 in several respects. First, we set c = 0 inM0 as in the regular exponential autoregressive

model in Haggan and Ozaki (1981) because the essential property in testing the linearity is that f(z̃′tα, ·) is an analytic

function. If c is estimated along with the other parameters π and θ, the null limit distribution of the QLR test becomes

more complicated than the one of the current study, and this limits its applicability due to its complexity.

The transition function is centered at f(z̃′tα, 0) for analytical convenience. As f(z̃′tα, 0) is constant, the non-

linearity feature of the STAR model is not modified by the centering. For example, we have fE(z̃′tα, 0) = 0 and

fL(z̃′tα, 0) = 1/2, and so it will be centered to have value zero. Furthermore, the centering further reduces the dimen-

sion of the identification problem. Without this assumption, π∗ and θ∗ are not separately identified under the linearity

hypothesis, where the subscript ‘∗’ is used to denote the probability limits of the parameter estimators that are defined

below, so that another identification problem is introduced. Specifically, if E[yt|zt] is linear with respect to zt, we can

generate a linear function from h(·;π∗, θ∗, γ∗) in two different ways by letting θ∗ = 0 or γ∗ = 0. Nevertheless, the

linearity hypothesis introduces identification problems. If θ∗ = 0, h(·;π∗, 0, γ∗) = z′tπ∗, so that γ∗ is not identified.

That is, Davies’s (1977, 1987) identification problem arises, and we call this problem type I identification problem.

Alternatively, if γ∗ = 0, h(·;π∗, θ∗, 0) = z′tπ∗, so that θ∗ is not identified, leading to another type of Davies’s (1977,
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1987) identification problem. We call this problem type II identification problem. On the other hand, if the transition

function is not centered at f(z̃′tα, 0), letting γ∗ = 0 and c = 0 leads to h0(zt;π∗, θ∗, 0, 0) = z′t(π∗ + f(z̃′tα, 0)θ∗).

This implies that the type II identification problem becomes more complicated as π∗ and θ∗ are not separately identi-

fied. The centering process is a device to make this complication a relatively simple identification problem. In addition

to this, the null limit distribution is not modified by this centering, mainly due to the invariance principle. Note that π

inM0 is reparameterized to π − f(z̃′tα, 0)θ inM, so that the QLR test statistic obtained by this reparameterization

becomes identical to that before the reparameterization. Without this reparameterization, the null model investigation

has to be separately conducted by discerning the parameters unidentified underH02 as in Cho and Phillips (2018). So,

we avoid the involved complication by the centering and obtain the null limit distribution of the QLR test statistic effi-

ciently. We also observe that this centering process is often applied in the literature to derive the null limit distribution

of the LM test statistic. For example, Teräsvirta (1994) shows that if zt contains the constant, the null limit distribution

of the LM test statistic is not affected by this centering because the centering parameter is merged with other linear

components while applying Taylor expansions.

As already mentioned, the STAR model is different from the artificial neural network model. This is mainly

because the transition function is multiplied by z′tθ, whereas in the ANN model it is multiplied by a constant. This

means that the null limit distribution of the QLR test be derived under regularity conditions that are different from

those needed for the ANN model. The parameters to be estimated are π, θ, and γ, as α is defined by the researcher.

Using Assumption 2, the linearity hypothesis and the alternative are specified as follows:

H0 : ∃π ∈ Rp+1 such that P(E[yt|zt] = z′tπ) = 1; vs. H1 : ∀π ∈ Rp+1, P(E[yt|zt] = z′tπ) < 1.

These hypotheses are the same as the ones in Cho, Ishida, and White (2011, 2014) and Baek, Cho, and Phillips (2015).

As in the previous literature, the focus is on developing an omnibus test statistic, but now against STAR, and we use

the QLR test statistic as a vehicle for reaching this goal. The QLR test statistic is formally defined as

QLRn := n

(
1−

σ̂2
n,A

σ̂2
n,0

)
, (1)

where

σ̂2
n,0 := min

π

1

n

n∑
t=1

(yt − z′tπ)2, σ̂2
n,A := min

π,θ,γ

1

n

n∑
t=1

{yt − z′tπ − ft(γ)(z′tα)}2,

and ft(γ) := f(z̃′tα, γ)− f(z̃′tα, 0).

The main reason to proceed with the QLR statistic is that the null hypothesis contains type I and II identification

problems, and this statistic is able to handle them jointly. As described above, the null holds for the following two

sub-hypotheses: H01 : θ∗ = 0 and H02 : γ∗ = 0. The limit distribution of the QLR test statistic can be derived both

underH01 andH02. We call these derivations type I and type II analysis, respectively. The null hypothesis of linearity

against STAR has to be properly tested by tackling both H01 and H02 simultaneously, and we shall demonstrate that

the QLR test statistic has the capability of doing so in the vein of the approaches in Cho and White (2007), Cho, Ishida,
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and White (2011, 2014), Cho and Ishida (2012), Baek, Cho, and Phillips (2015), and Cho, and Phillips (2015).

The aforementioned LM test statistic does not accommodate the twofold identification problem. Luukkonen,

Saikkonen, and Teräsvirta (1988), Teräsvirta (1994), and Granger and Teräsvirta (1993) study the null limit distribution

of the LM statistic for testing linearity usingH02. The main argument for the LM test is that its null limit distribution

is chi-squared, which makes the test easily applicable.

2.3 The Null Limit Distribution of the QLR Test

We now derive the null limit distribution of the QLR test following the approach in Cho, Ishida, and White (2011,

2014) and Baek, Cho, and Phillips (2015) and highlight the difference between the STAR-based approach and the

ANN-based one.

Due to the twofold identification problem, we divide our discussion into two parts. We first study the limit distri-

butions of the QLR test under H01 and H02 separately, combine them and, finally, obtain the limit distribution under

H0. For this purpose, we let our objective function or quasi-likelihood (QL) function be

Ln(π, θ, γ) := −
n∑
t=1

{yt − z′tπ − ft(γ)(z′tθ)}2.

The nonlinear least squares (NLS) estimator (π̂n, θ̂n, γ̂n) is obtained by maximizing the QL function with respect to

(π, θ, γ).

2.3.1 Type I Analysis: TestingH01 : θ∗ = 0

In this subsection, we discuss the limit distribution of the QLR test under H01 : θ∗ = 0. The problem is that γ∗ is not

identified under this hypothesis. We obtain the NLS estimator by maximizing the QL function with respect to γ in the

final stage for the purpose of testingH01:

L(1)
n := max

γ
max
θ

max
π
−

n∑
t=1

{yt − z′tπ − ft(γ)(z′tθ)}2

and let QLR(1)
n be the QLR statistic obtained by this optimization process. That is,

L(1)
n := max

γ∈Γ
{−u′Mu+ u′MF (γ)Z[Z ′F (γ)MF (γ)Z]−1Z ′F (γ)Mu},

where u := [u1, u2, . . . , un]′, ut := yt − E[yt|z̃t], Z := [Z1, Z2, . . . , Zn]′, M := I − Z(Z ′Z)−1Z ′, F (γ) :=

diag[f1(γ), f2(γ), . . . , fn(γ)], and

QLR(1)
n := max

γ∈Γ

1

σ̂2
n,0

u′MF (γ)Z[Z ′F (γ)MF (γ)Z]−1Z ′F (γ)Mu (2)
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underH01 using the fact that yt = E[yt|z̃t] + ut = z′tπ∗ + ut. Note that the numerator in the right-hand side of (2) is

identical to n(σ̂2
n,0 − σ̂2

n,A) underH01 : θ∗ = 0, so that the definition of the QLR test statistic accords with QLR(1)
n .

We now derive the limit distribution of QLR(1)
n under H01 similarly to Cho, Ishida, and White (2011, 2014) and

Baek, Cho, and Phillips (2015). For this purpose and to guarantee regular behaviour of the null limit distribution, we

impose the following conditions:

Assumption 3. (i) E[ut|z̃t, ut−1, z̃t−1, . . .] = 0; and (ii) E[u2
t |z̃t, ut−1, z̃t−1, . . .] = σ2

∗. �

Assumption 4. (i) supγ∈Γ |ft(γ)| ≤ mt; and (ii) supγ∈Γ |(∂/∂γ)ft(γ)| ≤ mt. �

Assumption 5. There exists a sequence of stationary ergodic random variables mt such that |ut| ≤ mt, |yt| ≤ mt

and for some ω ≥ 2(ρ− 1),E[m6+3ω
t ] <∞, where ρ is given in Assumption 1. �

Assumption 6. For each γ 6= 0, V1(γ) and V2(γ) are positive definite, where for each γ, V1(γ) := E[u2
t r̃t(γ)r̃t(γ)′]

and V2(γ) := E[r̃t(γ)r̃t(γ)′] with r̃t(γ) := (ft(γ)z′t, z
′
t)
′. �

Assumption 3(i) implies that the model in Assumption 2 is not dynamically misspecified, and Assumption 3(ii) implies

that the error is conditionally homoskedastic. Assumption 4 plays an integral role in applying the tightness condition

in Doukhan, Massart, and Rio (1995) to the QLR test statistic. The moment condition in Assumption 5 is stronger

than those in Cho, Ishida, and White (2011, 2014), and Assumptions 3 and 5 imply that E[u6
t ] and E[y6

t ] are finite. The

multiplicative component ft(γ)z′tθ in the STAR model makes the stronger moment condition necessary in deriving

the regular null limit distribution of the QLR test statistic. Assumption 6 is imposed for the invertibility of the limit

covariance matrix. This makes our test statistic non-degenerate.

Given these assumptions, we have the following lemma.

Lemma 1. Given Assumptions 1, 2, 3(i), 4, 5, 6, and H01, (i) σ̂2
n,0

a.s.→ σ2
∗ := E[u2

t ]; (ii) {n−1/2Z ′F (·)Mu,

σ̂2
n,0n

−1Z ′F (·)MF (·)Z} ⇒ {Z1(·), A1(·, ·)} on Γ and Γ × Γ, respectively, where Z1(·) is a continuous Gaussian

process with E[Z1(γ)] = 0, and for each γ and γ̃, E[Z1(γ)Z1(γ̃)′] = B1(γ, γ̃), whereB1(γ, γ̃) := E[u2
tf
∗
t (γ)f∗t (γ̃)′]

andA1(γ, γ̃) := σ2
∗E[f∗t (γ)f∗t (γ̃)′] with f∗t (γ) = ft(γ)zt−E[ft(γ)ztz

′
t] E[ztz

′
t]
−1zt; (iii) if, in addition, Assumption

3(ii) holds, B1(γ, γ̃) = A1(γ, γ̃). �

Lemma 1 plays a central role in deriving the null limit distribution of QLR(1)
n and corresponds to lemma 1 of Cho,

Ishida, and White (2011). Despite being similar, the two lemmas are not identical. Note that Z1(·) is mapped to

Rp+1, whereas their lemma obtains a univariate Gaussian process. The multidimensional Gaussian process Z1(·)

distinguishes the STAR model-based testing from the ANN-based approach. The STAR model has a different null

limit distribution by this, and the QLR test based upon the STAR model has power over alternatives in different

directions from those of the ANN-based approach.

There is a caveat to Lemma 1. It is clear from (2) that the null limit distribution of QLR(1)
n is determined by the

limit behaviour under H01 of both n−1/2Z ′F (·)Mu and n−1Z ′F (·)MF (·)Z. Furthermore, limγ→0 Z
′F (γ)Mu

a.s.
=

Z ′F (0)Mu = 0 and limγ→0 Z
′F (γ)MF (γ)Z

a.s.
= Z ′F (0)MF (0)Z = 0 by the definition of ft(·). This implies that
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it is hard to obtain the limit distribution of QLR(1)
n around γ = 0. We therefore assume for the moment that 0 is not

included in Γ. This condition is relaxed when the limit distribution is examined underH0.

Theorem 1. Given Assumptions 1, 2, 3(i), 4, 5, 6, and H01, (i) QLR(1)
n ⇒ supγ∈Γ(ε) G1(γ)′G1(γ), where G1(·) is a

Gaussian stochastic process such that for each γ,

E[G1(γ)] = 0 and E[G1(γ)G1(γ̃)′] = A1(γ, γ)−1/2B1(γ, γ̃)A1(γ̃, γ̃)−1/2,

where Γ(ε) := {γ ∈ Γ : |γ| ≥ ε}; (ii) if, in addition, Assumption 3 (ii) holds,

E[G1(γ)G1(γ̃)′] = A1(γ, γ)−1/2A1(γ, γ̃)A1(γ̃, γ̃)−1/2. �

Γ(ε) is considered instead of Γ when γ is excluded around zero. As continuous mapping makes proving Theorem 1

trivial, no proof is given.

Theorem 1 implies that QLR(1)
n does not asymptotically follow a chi-squared distribution under H01 as does the

LM statistic in Luukkonen, Saikkonen, and Teräsvirta (1988), Teräsvirta (1994), and Granger and Teräsvirta (1993).

The difficulty here is that the null limit distribution contains the unidentified nuisance parameter γ. We can overcome

this obstacle by applying Hansen’s (1996) weighted bootstrap as in Cho, Cheong, and White (2011) and Cho, Ishida,

and White (2011, 2014) to the QLR test statistic.

2.3.2 Type II Analysis: TestingH02 : γ∗ = 0

In this subsection, we study the limit distribution under H02 : γ∗ = 0. This is the null hypothesis used in deriving the

LM statistic in Luukkonen, Saikkonen, and Teräsvirta (1988), Teräsvirta (1994), and Granger and Teräsvirta (1993).

As we know, θ∗ is not identified underH02. We therefore maximize the QL function with respect to θ at the final stage:

L(2)
n := supθ supγ supπ −

∑n
t=1{yt − z′tπ − ft(γ)(z′tθ)}2, and denote the QLR test defined by this maximization

process by QLR(2)
n .

Several remarks are in order. First, maximizing the QL with respect to π is relatively simple due to linearity. We

let the concentrated QL (CQL) function be L(2)
n (γ, θ) := supπ Ln(π, θ, γ) = −[y−F (γ)Zθ]′M [y−F (γ)Zθ], where

y := [y1, y2, . . . , yn]. Second, L(2)
n (·) is not linear with respect to γ, so that the next stage CQL function with respect

to γ cannot be analytically derived. We approximate the CQL function with respect to γ around γ∗ = 0 and capture

its limit behaviour underH02. The first-order derivative of L(2)
n (γ, θ) with respect to γ is

(
d

dγ

)
L(2)
n (γ, θ) = 2[y − F (γ)Zθ]′M

∂F (γ)

∂γ
Zθ,

where
∂F (γ)

∂γ
:=

(
∂

∂γ

)
(f(z̃′1α, γ), ..., f(z̃′nα, γ)).

For the LSTAR model, ∂fL(z̃′tα, γ)/∂γ = fL(z̃′tα, γ)(1 − fL(z̃′tα, γ))z̃′tα and ∂F (0)/∂γ = (1/4)(z̃′1α, ..., z̃
′
nα)′,

8



whereas for ESTAR, ∂fE(z̃′tα, γ)/∂γ = (z̃′tα)2(1 − fE(z̃′tα, γ)), so ∂F (0)/∂γ = ((z̃′1α)2, ..., (z̃′nα)2)′, implying

that we can approximate the CQL function by a second-order approximation. Nevertheless, as Luukkonen, Saikkonen,

and Teräsvirta (1988), Teräsvirta (1994), and Cho, Ishida, and White (2011, 2014) point out, the first-order derivative

is often zero for many other models, recommending alternatively applying higher-order Taylor’s approximations un-

der their model contexts. Cho, Ishida, and White (2014) adopt a sixth-order Taylor expansion, whereas Luukkonen,

Saikkonen, and Teräsvirta (1988), Teräsvirta (1994), and Cho, Ishida, and White (2011) use fourth-order Taylor ex-

pansions to obtain the null limit distributions of the LM or QLR test statistics under H02. The order of expansion is

determined by the functional form of f(z̃′tα, ·).

As our model does not have a fixed form of the STAR model, we fix our model scope by letting κ (κ ∈ N) be the

smallest order such that the κ-th order partial derivative with respect to γ is different from zero at γ = 0, so that for

all j < κ, (∂j/∂γj)L(2)
n (0, ·) ≡ 0. Then, the CQL function is expanded as

L(2)
n (γ, θ) = L(2)

n (0, θ) +
1

κ!

∂κ

∂γκ
L(2)
n (0, θ)γκ + . . .+

1

(2κ)!

∂2κ

∂γ2κ
L(2)
n (0, θ)γ2κ + oP(γ2κ). (3)

Note that for j = 1, 2, . . . , κ − 1, (∂j/∂γj)L(2)
n (0, θ) = 0 by the definition of κ. The partial derivatives in (3) are

given in the following lemma:

Lemma 2. Given Assumption 2, the definition of κ, andH02,

∂j

∂γj
L(2)
n (0, θ) =

 2θ′Z ′Hj(0)Mu, for κ ≤ j < 2κ ;

2θ′Z ′H2κ(0)Mu−
(

2κ
κ

)
θ′Z ′Hκ(0)MHκ(0)Zθ, for j = 2κ,

where Hj(γ) := (∂j/∂γj)F (γ). �

Using Lemma 2 we can specifically write (3) as

L(2)
n (γ, θ)− L(2)

n (0, θ) =

2κ∑
j=κ

2

j!
{θ′Z ′Hj(0)Mu}γj − 1

(2κ)!

(
2κ

κ

)
θ′Z ′Hκ(0)MHκ(0)Zθγ2κ + oP(γ2κ). (4)

To reduce notational clutter, we further let Gj := [gj,1, gj,2, . . . , gj,n]′ := MHj(0)Z, where gj,t := hj,t(0)zt −

Z ′Hj(0)Z(Z ′Z)−1Z ′zt and ςn := n1/2κγ with hj,t(0) being the t-th diagonal element of Hj(0). Then, (4) is written

as

L(2)
n (γ, θ)− L(2)

n (0, θ) =

2κ∑
j=κ

2

j!nj/2κ
{θ′G′ju}ςjn −

1

(2κ)!n

(
2κ

κ

)
{θ′G′κGκθ}ς2κn + oP(γ2κ). (5)

We note that if j = 2κ, n−j/2κG′ju = OP(1) by applying the central limit theorem. Furthermore, for j = κ +

1, . . . , 2κ − 1, n−j/(2κ)(∂j/∂γj)L(2)
n (γ, θ) = oP(1) and θ′G2κu = oP(n) by the ergodic theorem, so that they

become asymptotically negligible, implying that the smallest j-th component greater than κ and surviving at the limit

becomes the second-final term in the right side of (5) that is obtained by letting j = 2κ. Note that n−1G′κGκ = OP(1),

if the ergodic theorem applies. Furthermore, the terms with j > 2κ belong to oP(γ2κ), so that they are asymptotically

9



negligible under the null at any rate. Due to this fact, L(2)
n (·, θ) is approximated by the 2κ-th degree polynomial

function in (5), and we can establish the following lemma by collecting the terms asymptotically surviving under the

null:

Lemma 3. Given Assumptions 1, 2, 7, andH02, QLR(2)
n = supθ QLR

(2)

n (θ) + oP(n), where for given θ,

QLR
(2)

n (θ) := sup
ςn

1

σ̂2
n,0

{
2

κ!n1/2
{θ′G′κu}ςκn −

1

(2κ)!n

(
2κ

κ

)
θ′G′κGκθς

2κ
n

}

and ς̂κn(θ) denotes the value of ςκn that maximizes the given objective function, so that

ς̂κn(θ) =

 Wn(θ), if κ is odd;

max[0,Wn(θ)], if κ is even,

where

Wn(θ) := κ!n1/2 θ′G′κu

θ′G′κGκθ
. �

Lemma 3 implies that the functional form of QLR
(2)

n (·) depends on κ:

QLR
(2)

n (θ) =


1

σ̂2
n,0

(θ′G′κu)2

θ′G′κGκθ
, if k is odd;

1
σ̂2
n,0

max
[
0,

(θ′G′κu)2

θ′G′κGκθ

]
, if k is even.

If θ is a scalar as in the previous literature, θ cancels out, so maximization with respect to θ does not matter any longer,

see Cho, Ishida, and White (2011, 2014). This implies that QLR(2)
n and QLR

(2)

n (·) are asymptotically equivalent

underH02. On the other hand, if θ is a vector, the asymptotic null distribution of the test statistic has to be determined

by further maximizing QLR
(2)

n (·) with respect to θ.

We now derive the regular asymptotic distribution of QLR test statistic under H02. The following conditions are

sufficient for doing it:

Assumption 7. For each j = κ, κ + 1, . . . , 2κ and i = 0, 1, . . . , p, (i) E[|ut|8] < ∞, E[|hj,t(0)|8] < ∞, and

E[|zt,i|4] <∞; or (ii) E[|ut|4] <∞, E[|hj,t(0)|8] <∞, and E[|zt,i|8] <∞. �

Assumption 8. V3(0) and V4(0) are positive definite, where for each γ, V3(γ) := E[u2
t r̄t(γ)r̄t(γ)′] and V4(γ) :=

E[r̄t(γ)r̄t(γ)′] with r̄t(γ) := (ht,κ(γ)z′t, z
′
t)
′. �

Note that γ does not play a significant role in Assumption 8 as it does in the previous case, because QLRn(·) has

already concentrated the QL function with respect to γ. Given these regularity conditions, the key limit results of the

components that constitute QLR
(2)

n (·) appear in the following lemma:

Lemma 4. Given Assumptions 1, 2, 3(i), 4, 7, 8, and H02, (i) n−1/2G′κu ⇒ Z2, where E[Z2] = 0 and E[Z2Z ′2] =

E[u2
t gt,κg

′
t,κ]; (ii) n−1G′κGκ

a.s.→ A2, where A2 := E[gt,κg
′
t,κ]; and (iii) if, additionally, Assumption 3(iii) holds,

E[u2
t gt,κg

′
t,κ] = σ2

∗E[gt,κg
′
t,κ]. �
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Using this lemma, the following theorem describes the limit distribution of QLR(2)
n underH02.

Theorem 2. Given Assumptions 1, 2, 3(i), 4, 7, 8, andH02, (i)

QLR(2)
n ⇒

 maxθ∈Θ G2(θ)2, if k is odd;

maxθ∈Θ max[0,G2(θ)]2, if k is even,

where G2(·) is a Gaussian stochastic process such that for each θ, E[G2(θ)] = 0 and

E[G2(θ)G2(θ̃)] =
B2(θ, θ̃)

A2(θ, θ)1/2A2(θ̃, θ̃)1/2
,

where B2(θ, θ̃) := θ′E[u2
t gt,κg

′
t,κ]θ̃ and A2(θ, θ̃) := σ2

∗θ
′E[gt,κg

′
t,κ]θ̃; (ii) if, additionally, Assumption 3(iii) holds,

E[G2(θ)G2(θ̃)] =
A2(θ, θ̃)

A2(θ, θ)1/2A2(θ̃, θ̃)1/2
.

As Theorem 2 trivially follows from Lemma 4 and continuous mapping, its proof is omitted.

Several remarks are in order. First, the covariance kernel of G2(·) is bilinear with respect to θ and θ̃. This implies

that G2(θ) is a linear Gaussian process with respect to θ. Therefore, if z ∼ N(0,E[u2
t gt,κg

′
t,κ]), z′θ as a function

of θ is distributionally equivalent to G2(·). This fact relates the null limit distribution to the chi-squared distribution.

Corollary 1 of Cho and White (2018) shows that maxθ∈Θ G2(θ)2 d
= X 2

p+1 if G2(·) is a linear Gaussian process and

E[u2
t gt,κg

′
t,κ] = σ2

∗E[gt,κg
′
t,κ], where X 2

p+1 is a chi-squared distribution with p + 1 degrees of freedom . Second, the

chi-squared null limit distributions of the LM test statistics in Luukkonen, Saikkonen, and Teräsvirta (1988), Teräsvirta

(1994), and Granger and Teräsvirta (1993) follow from the fact that the LM test statistic is equivalent to the QLR test

statistic under H02. Third, the process to obtain the limit distribution of the QLR test under H02 of here is simpler

than that of Cho, Ishida, and White (2011) and Cho and Phillips (2018) in which they examine two other identification

problems. In our context, if ft(·) is not defined by centering f(·, γ) at f(·, 0), π∗ and θ∗ are not separately identified.

2.3.3 Null Limit Distribution of the QLR Test Statistic underH0

In this subsection, we derive the limit distribution of the QLR test under H0 by examining the relationship between

QLR
(1)
n and QLR(2)

n . Specifically, we show that QLR(1)
n ≥ QLR

(2)
n , which means the limit distribution under H0

equals that ofQLR(1)
n . Although this idea is the same as the one in Cho, Ishida, and White (2011, 2014), their approach

cannot be applied in the current context. This is because the associated Gaussian process G1(·) is multidimensional.

The following lemma generalizes the approach in Cho, Ishida, and White (2011, 2014) to STAR models.

Lemma 5. Let n(γ) := Z ′F (γ)Mu andD(γ) := Z ′F (γ)MF (γ)Z ′ with n(j)(γ) := (∂j/∂γj)n(γ), andD(j)(γ) :=

(∂j/∂γj)D(γ). Under Assumptions 1, 2 and 3, (i) for j < κ, limγ→0 n
(j)(γ)

a.s.
= 0 and limγ→0D

(j)(γ)
a.s.
= 0; (ii)

limγ→0 n
(κ)(γ)

a.s.
= G′κu; and (iii) limγ→0D

(κ)(γ)
a.s.
= G′κGκ. �
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The limit obtained by letting γ → 0 under H01 can be compared with that obtained under H02. More specifically,

using Lemma 5 and L’Hospital’s rule, we obtain

lim
γ→0

n(γ)′D(γ)
−1
n(γ)

a.s.
= lim

γ→0
n(κ)(γ)′D(κ)(γ)

−1
n(κ)(γ)

a.s.
= u′Gκ(G′κGκ)−1G′κu.

From this, it follows that QLR(1)
n ≥ supθ QLR

(2)

n (θ) because

QLR(1)
n = sup

γ∈Γ

1

σ̂2
n,0

n(γ)′D(γ)
−1
n(γ) ≥ lim

γ→0

1

σ̂2
n,0

n(γ)′D(γ)
−1
n(γ)

a.s.
=

1

σ̂2
n,0

u′Gκ(G′κGκ)−1G′κu.

Furthermore, QLR
(2)

n (θ) is asymptotically equal to 1
σ̂2
n,0
u′Gκθ(θ

′G′κGκθ)
−1θ′G′κu. Thus, it follows that QLR(1)

n ≥

supθ QLR
(2)

n (θ) + oP(1), if

Gκ(G′κGκ)−1G′κ −Gκθ(θ′G′κGκθ)−1θ′G′κ (6)

is positive semidefinite irrespective of θ. To show this we first note that the two terms in (6) are idempotent and

symmetric matrices. Therefore, we may apply Exercise 8.58 in Abadir and Magnus (2005, p. 233). Then,

{Gκ(G′κGκ)−1G′κ}{Gκθ(θ′G′κGκθ)−1θ′G′κ} = Gκθ(θ
′G′κGκθ)

−1θ′G′κ

so that (6) is positive semidefinite. This implies

QLRn = max[QLR(1)
n , QLR(2)

n ] + oP(1) = max

[
QLR(1)

n , sup
θ
QLR

(2)

n (θ)

]
+ oP(1) = QLR(1)

n + oP(1).

We can thus conclude that if the conditions in Theorems 1 and 2 hold simultaneously, the null limit distribution of the

QLR test statistic is derived by combining Theorems 1 and 2. For this purpose, we combine Assumptions 6 and 8 into

a new assumption as follows:

Assumption 9. For each γ 6= 0, V5(γ) and V6(γ) are positive definite, where for each γ, V5(γ) := E[u2
t r̈t(γ)r̈t(γ)′]

and V6(γ) := E[r̈t(γ)r̈t(γ)′] with r̈t(γ) := (ht,κ(0)z′t, ft(γ)z′t, z
′
t)
′. �

The following theorem now yields the limit distribution of the QLR test underH0.

Theorem 3. Given Assumptions 1, 2, 3(i), 4, 5, 7, 9, and H0, (i) QLRn ⇒ supγ∈Γ G1(γ)′G1(γ), where G1(·) is a

Gaussian stochastic process such that for each γ, E[G1(γ)] = 0 with

E[G1(γ)G1(γ̃)′] = A1(γ, γ)−1/2B1(γ, γ̃)A1(γ̃, γ̃)−1/2;

(ii) if Assumption 3(ii) also holds,

E[G1(γ)G1(γ̃)′] = A1(γ, γ)−1/2A1(γ, γ̃)A1(γ̃, γ̃)−1/2. �
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Theorem 3 immediately follows from Theorems 1 and 2 and from our earlier argument thatQLRn = QLR
(1)
n +oP(1),

which is why we do not prove it in the Appendix. Note that the consequence of Theorem 3 is the same as that of

Theorem 1, although the null hypothesis is extended to H0 from H01 by enlarging the parameter space from Γ(ε) to

Γ. The given null limit distribution is derived as in Cho, Ishida, and White (2011, 2014) and Baek, Cho, and Phillips

(2015). Nevertheless, our proofs generalize theirs due to the existence of the multidimensional Gaussian process.

Furthermore, this null limit distribution extends the scope of the LM test statistics in Luukkonen, Saikkonen, and

Teräsvirta (1988), Teräsvirta (1994), and Granger and Teräsvirta (1993) who only testH02.

3 Monte Carlo Experiments

In this section, we illustrate testing linearity using the ESTAR and LSTAR models and simulate the QLR test statistic

to support the statistical theory in Section 2. Hansen’s (1996) weighted bootstrap is also applied to enhance the

applicability of our methodology.

3.1 Illustration Using the ESTAR Model

To simplify our illustration, we assume that for all t = 1, 2, . . ., ut ∼ IID N(0, σ2
∗) and yt = π∗yt−1 + ut with

π∗ = 0.5. Under this DGP, we specify the following first-order ESTAR model:

MESTAR := {πyt−1 + θyt−1{1− exp[−γ(yt−1 − c)2]} : π ∈ Π, θ ∈ Θ, and γ ∈ Γ}.

The model does not contain an intercept, the transition variable is yt−1, and in what follows we assume that c = 0 to

avoid unintended identification problem under the null. The nonlinear function ft(γ) = 1 − exp(−γy2
t−1) is defined

on Γ which is a compact and convex, and the exponential function is analytic. This means that the QLR test statistic is

generically comprehensively revealing. To identify the model it is assumed that γ∗ > 0, so the identification problem

can be avoided. In our model set-up, we allow that 0 is included in Γ. The nonlinear function ft(·) satisfies ft(0) = 0.

Given this model, the following hypotheses are of interest:

H′0 : ∃π ∈ R,P(E[yt|yt−1] = πyt−1) = 1; vs. H′1 : ∀π ∈ R,P(E[yt|yt−1] = πyt−1) < 1,

Two parameter restrictions make H′0 valid: either θ∗ = 0 or γ∗ = 0. The sub-hypotheses are thus H′01 : θ∗ = 0 and

H′02 : γ∗ = 0.

We first examine the null distribution of the QLR test under H′01. By Theorem 1, the limit null distribution of this

test statistic is given as

QLR(1)
n = sup

γ∈Γ

1

σ̂2
n,0

(u′MF (γ)Z)2

Z ′F (γ)MF (γ)Z
⇒ sup

γ∈Γ
G̃1(γ)2

13



where G̃1(·) is a mean-zero Gaussian process with the covariance structure

ρ̃1(γ, γ̃) =
k̃1(γ, γ̃)

c1(γ, γ)1/2c̃1(γ̃, γ̃)1/2
(7)

with

k̃1(γ, γ̃) = c̃1(γ, γ̃) = σ2
∗E[y2

t exp(−(γ + γ̃)y2
t )]− σ2

∗E[y2
t exp(−γy2

t )]E[y2
t ]−1E[y2

t exp(−γ̃y2
t )].

Furthermore, under H′01, yt is normally distributed with E[yt] = 0 and var[yt] = σ2
y := σ2

∗/(1 − π2
∗), so that y2

t

follows the gamma distribution with shape parameter 1/2 and scale parameter 2σ2
∗/(1− π2

∗). Define

m̃(γ) :=

(
1 +

2σ2
∗

1− π2
∗
γ

)− 1
2

,

and

h̃(γ, γ̃) :=
1

σ2
y

[ 1 + 2σ2
y(γ + γ̃)

(1 + 2σ2
yγ)(1 + 2σ2

y γ̃)

]−3/2

− 1

 .

Note that m̃(γ) = E[exp(−γy2
t )], so that E[y2

t exp(−γy2
t )] = −m̃′(γ). As a result, (7) is further simplified to

k̃1(γ, γ̃) = σ2
∗m̃
′(γ)m̃′(γ̃)h̃(γ, γ̃), and

ρ̃1(γ, γ̃) =
k̃1(γ, γ̃)

c̃1(γ, γ)1/2c̃1(γ̃, γ̃)1/2
=

h̃(γ, γ̃)

h̃(γ, γ)1/2h̃(γ̃, γ̃)1/2
.

We next examine the limit distribution of the QLR test statistic under H′02: γ∗ = 0. The first-order derivative

(∂/∂γ)ft(γ) = y2
t−1 exp(−γy2

t−1), which is different from zero even when γ = 0, so that in this case κ = 1. Thus,

we can apply the second-order Taylor expansion to obtain the limit distribution of the QLR test statistic under H′02.

As a result,

QLR
(2)

n (θ) =
1

σ̂2
n,0

(θ′G′κu)2

θ′G′κGκθ
, (8)

where

θ′G′κu = θ

[∑
y3
t−1ut −

∑
y4
t−1

∑
yt−1ut∑

y2
t−1

]
and θ′G′κGκθ = θ2

[∑
y6
t−1 −

(
∑
y4
t−1)2∑
y2
t−1

]
.

In (8), θ is a scalar, so that cancels out, and it follows that QLR(2)
n ⇒ G̃2

2 , where G̃2 ∼ N(0, 1).

These two separate results can be combined, which means that we can examine the limit distribution of the QLR

test underH′0. We have QLRn ⇒ supγ∈Γ G̃(γ)2, where

G̃(γ) =

 G̃1(γ), if γ 6= 0;

G̃2 otherwise,
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and

E[G̃(γ)G̃(γ̃)] =


ρ̃1(γ, γ̃), if γ 6= 0, γ̃ 6= 0;

1 if γ = 0, γ̃ = 0;

ρ̃3(γ). if γ 6= 0, γ̃ = 0,

with

ρ̃3(γ) := E[G̃1(γ)G̃2] =

√
6σ2

yγ

h̃(γ, γ)1/2(1 + 2σ2
yγ)

such that

ρ̃3(γ)2 = lim
γ̃→0

ρ̃1(γ, γ̃)2 =

( √
6σ2

yγ

h̃(γ, γ)1/2(1 + 2σ2
yγ)

)2

.

Thus, we conclude that QLRn ⇒ supγ G̃(γ)2, which agrees with Theorem 3.

The null limit distribution can be approximated numerically by simulating a distributionally equivalent Gaussian

process. To do this we present the following lemma:

Lemma 6. If {zk : k = 0, 1, 2, . . .} is an IID sequence of standard normal random variables, G̃(·) d
= G(·), where for

each γ ∈ Γ := {γ ∈ R : γ ≥ 0},

G(γ) :=

∞∑
k=1

c(γ) · a(γ)k
[
(−1)k

(
−3/2

k

)]1/2

zk, c(γ) :=

{ ∞∑
k=1

(−1)ka(γ)2k

(
−3/2

k

)}−1/2

,

and a(γ) := 2σ2
yγ/(1 + 2σ2

yγ). �

Note that the term (−1)k
(−3/2

k

)
in Lemma 6 is always positive irrespective of k, and for any γ,

lim
k→∞

var

[
a(γ)k

(
(−1)k

(
−3/2

k

))1/2

zk

]
= lim
k→∞

a(γ)2k(−1)k
(
−3/2

k

)
= 0 (9)

and

h̃(γ, γ) =

∞∑
k=1

a(γ)2k(−1)k
(
−3/2

k

)
.

Using these facts Lemma 6 shows that for any γ, γ̃ 6= 0, E[G(γ)G(γ̃)] = ρ̃1(γ, γ̃). Here, the non-negative parameter

space condition for Γ is necessary for G(·) to be properly defined on Γ. Without this condition, G(γ) cannot be properly

generated. We note that limγ↓0 G(γ)
a.s.
= z1, so that if we let z1 = G2,

E[G(γ)G2] =

√
6σ2

yγ

h̃(γ, γ)1/2(1 + 2σ2
yγ)

= ρ̃3(γ).

It follows that the distribution of G̃(·) can be simulated by iteratively generating G(·). In practice,

G(γ;K) :=

∑K
k=1 a(γ)k[(−1)k

(−3/2
k

)
]1/2zk√∑K

k=1 a(γ)2k(−1)k
(−3/2

k

)
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is generated by choosing K to be sufficiently large . By (9), if this is the case, the difference between the distributions

of G(·) and G(·;K) becomes negligible.

We now examine the empirical distributions of the QLR statistic under several different environments. First, we

consider four different parameter spaces: Γ1 = [0, 2], Γ2 = [0, 3], Γ3 = [0, 4], and Γ4 = [0, 5]. They are selected to

examine how the null limit distribution of the QLR test is influenced by the choice of Γ. We obtain the limit distribution

by simulating supγ∈Γ Ḡ(γ;K)2 5,000 times with K = 2, 000, where Γ is in turn Γ1, Γ2, Γ3, and Γ4. Second, we

study how the empirical distribution of the QLR test statistic changes with the sample size. We consider the sample

sizes n = 100, 1, 000, 2, 000, and 5, 000.

Figure 1 summarizes the simulation results and shows that the empirical distribution approaches the null limit

distribution under different parameter space conditions. We also provide the estimates of the probability density

functions next to the empirical distributions. For every parameter space considered, the empirical rejection rates of the

QLR test statistics are most accurate when n = 2, 000. The empirical rejection rates are closer to the nominal levels

when the parameter space is small. This result is significant when n = 100: the empirical rejection rates for Γ = Γ1

are closer to the nominal ones than when Γ = Γ4. Nonetheless, this difference becomes negligible as the sample

size increases. The empirical rejection rates obtained using n = 2, 000 are already satisfactorily close to the nominal

levels, and this result is more or less similar to that from 5,000 observations. This suggests that the theory in Section 2

is effective for the ESTAR model. Considering even larger parameter spaces for γ yielded similar results, so they are

not reported here.

3.2 Illustration Using the LSTAR Model

As another illustration, we consider testing against the first-order LSTAR model. We assume that the data-generating

process is yt = π∗yt−1 + ut with π∗ = 0.5 and

ut =

 `t, w.p. 1− π2
∗ ;

0, w.p. π2
∗

where {`t}nt=1 follows the Laplace distribution with mean 0 and variance 2. Under this assumption, yt follows the

same distribution as `t that makes the algebra associated with the LSTAR model straightforward. For example, the

covariance kernel of the Gaussian process associated with the null limit distribution of the QLR test statistic is ana-

lytically obtained thanks to this distributional assumption. This DGP is a variation of the exponential autoregressive

model in Lawrence and Lewis (1980). Their exponential distribution is replaced by the Laplace distribution to allow

yt to obtain negative values.

Given this DGP, the first-order LSTAR model for E[yt|yt−1, yt−2, . . .] is defined as follows:

M0
LSTAR := {πyt−1 + θyt−1{1 + exp(−γyt−1)}−1 : π ∈ Π, θ ∈ Θ, and γ ∈ Γ := [0, γ̄]}.

The nonlinear logistic function {1 + exp(−γyt−1)}−1 contains an exponential function. It is therefore analytic, and
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this fact delivers a consistent power for the QLR test statistic. Note, however, that for γ = 0 the value of the logistic

function equals 1/2. This difficulty is avoided by subtracting 1/2 from the logistic function when carrying out the test,

viz.,

MLSTAR := {πyt−1 + θyt−1{[1 + exp(−γyt−1)]−1 − 1/2} : π ∈ Π, θ ∈ Θ, and γ ∈ Γ := [0, γ̄]}.

By the invariance principle, this shift does not affect the null limit distribution of the QLR test statistic. We here let

γ ≥ 0 so that transition function is bounded. If γ < 0, the transition function may not be bounded. The null and the

alternative hypotheses are identical to those in the ESTAR case.

Before proceeding, note that

{1 + exp(−γyt−1)}−1 − 1

2
=

1

2
tanh

(γyt−1

2

)
Using the hyperbolic tangent function as in Bacon and Watts (1971) makes it easy to find a Gaussian process that is

distributionally equivalent to the Gaussian process obtained under the null.

Using this fact, the limit distribution of QLR test statistic underH′01 is derived as in before. By Theorem 1,

QLR(1)
n = sup

γ∈Γ

1

σ̂2
n,0

(u′MF (γ)Z)2

Z ′F (γ)MF (γ)Z
⇒ sup

γ∈Γ
G̈1(γ)2

where G̈1(·) is a mean-zero Gaussian process with the covariance structure

ρ̈1(γ, γ̃) :=
k̈1(γ, γ̃)

c̈1(γ, γ)1/2c̈1(γ̃, γ̃)1/2
.

The function k̈1(γ, γ̃) is equivalent to c̈1(γ, γ̃) by the conditional homoskedasticity condition, and for each nonzero γ

and γ̃, we now obtain that

k̈1(γ, γ̃) =
1

4
E
[
y2
t−1 tanh

(γyt−1

2

)
tanh

(
γ̃yt−1

2

)]
− 1

4
E
[
y2
t−1 tanh

(γyt−1

2

)]
E[y2

t−1]−1E
[
y2
t−1 tanh

(
γ̃yt−1

2

)]
.

In the proof of Lemma 7 given in the Appendix, we further show that

k̈1(γ, γ̃) =

∞∑
n=1

bn(γ)bn(γ̃),

where

b1(γ) :=
1√
2

(1− 2a(γ)) with a(γ) :=

∞∑
k=1

(−1)k−1

(1 + γk)3
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and for n = 2, 3, . . .,

bn(γ) :=
√
n(n+ 1)

∞∑
k=1

(−1)k−1(γk)n−1

(1 + γk)n+2
.

Next, we derive the limit distribution of the QLR test statistic underH′02. For γ = 0,

(∂/∂γ)ft(γ) = yt−1 exp(γyt−1)/[1 + exp(−γyt−1)]2 6= 0,

implying that κ is unity as for the ESTAR case, so that we can apply a second-order Taylor expansion to obtain the

limit distribution of the QLR test statistic underH′02:

QLR
(2)

n (θ) =
1

σ̂2
n,0

(θ′G′κu)2

θ′G′κGκθ
,

where, similarly to the ESTAR case,

θ′G′κu =
θ

4

[∑
y2
t−1ut −

θ

4

∑
y3
t−1

∑
yt−1ut∑

y2
t−1

]
and θ′G′κGκθ =

θ2

16

[∑
y4
t−1 −

(
∑
y3
t−1)2∑
y2
t−1

]
.

From this it follows that QLR(2)
n ⇒ G̈2

2 , where G̈2 ∼ N(0, 1).

Therefore, we conclude that QLRn ⇒ supγ G̈(γ)2, where

G̈(γ) :=

 G̈1(γ), if γ 6= 0;

G̈2, otherwise.

The limit variance of G̈(γ) is given as

ρ̈(γ, γ̃) := E[G̈(γ)G̈(γ̃)] =


ρ̈1(γ, γ̃), if γ 6= 0, γ̃ 6= 0;

1 if γ = 0, γ̃ = 0;

ρ̈3(γ), if γ 6= 0, γ̃ = 0,

where

ρ̈3(γ) := E[G̈(γ)G̈2] =
r̈1(γ)

k̈1(γ, γ)1/2q̈1/2
with r̈1(γ) :=

1

2
E
[
y3
t−1 tanh

(γyt−1

2

)]
and q̈ := E[y4

t ]− E[y3
t ]2

E[y2
t ]
.

From this it follows that QLRn ⇒ supγ∈Γ G̈(γ)2. Furthermore, E[y3
t ] = 0 and E[y4

t ] = 24 given our DGP, so that

ρ̈3(γ) =
E[y3

t tanh(γyt/2)]

4
√

6k̈1(γ, γ)1/2
. (10)

Here, we note that

E[y3
t tanh(γyt/2)] =

1

8γ4

[
48γ4 + PG

(
3, 1 +

1

2γ

)
− PG

(
3,

1 + γ

2γ

)]
(11)
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by some tedious algebra assisted by Mathematica, where PG(n, x) is the polygamma function:

PG(n, x) := (dn+1/dxn+1) log(Γ(x)).

Inserting (11) into (10) yields

ρ̈3(γ) =
1

32
√

6γ4k̈1(γ, γ)1/2

[
48γ4 + PG

(
3, 1 +

1

2γ

)
− PG

(
3,

1 + γ

2γ

)]
. (12)

In addition, we show in the supplementary lemma (Lemma 8) given in the Appendix that applying L’hopital’s rule

iteratively yields that

lim
γ̃↓0

ρ̈1(γ, γ̃)2 =

(
1

32
√

6γ4k̈1(γ, γ)1/2

[
48γ4 + PG

(
3, 1 +

1

2γ

)
− PG

(
3,

1 + γ

2γ

)])2

. (13)

This fact implies that plimγ↓0G̈1(γ)2 = G̈2
2 . That is, the weak limit of the QLR test statistic underH′02 can be obtained

from G̈1(·)2 by letting γ converging to zero, so that QLRn ⇒ supγ∈Γ G̈1(γ)2 underH′0.

Next, we derive another Gaussian process that is distributionally equivalent to G̈(·) and conduct Monte Carlo

simulations using it. The process is presented in the following lemma.

Lemma 7. If {zk}∞k=1 is an IID sequences of standard normal random variables, then for each γ and γ̃ ∈ Γ := {γ ∈

R : γ ≥ 0}, G̈(·) d
= Ġ(·), where

Z̈1(γ) :=

∞∑
n=1

bn(γ)zn and Ġ(γ) :=

( ∞∑
n=1

bn(γ)2

)−1/2

Z̈1(γ).

We prove Lemma 7 by showing that the Gaussian process Ġ(·) given in Lemma 7 has the same covariance structure

as G̈(·), and for this purpose, we focus on proving that for all γ, γ̃ ≥ 0, E[G̈(γ)G̈(γ̃)] = E[Ġ(γ)Ġ(γ̃)] in the Appendix.

If γ, γ̃ > 0, the desired equality trivially follows from the definition of Ġ(·). On the other hand, applying L’hopital’s

rule iterative shows that

plimγ↓0Ġ(γ) =

√
3

2
z1 +

1

2
z2 ∼ N(0, 1),

so that if we let Ġ2 := limγ↓0 Ġ(γ), then for γ 6= 0,

E[Ġ(γ)Ġ2] =
1

2k̈1(γ, γ)1/2

[√
3b1(γ) + b2(γ)

]
.

We show in the proof of Lemma 7 that the term on the right side is identical to ρ̈3(γ) in (12), so that the covariance

kernel of Ġ(·) is identical to ρ̈(·, ·). This fact implies that G̈(·) has the same distribution as Ġ(·), and Ġ2 can be regarded

as the weak limit obtained underH′02.

Lemma 7 can be used to obtain the approximate null limit distribution of the QLR test statistic. We cannot generate

Ġ(·) using the infinite number of bn(·), but we can simulate the following process to approximate the distribution of
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Ġ(·):

Ġ(γ;K) :=

(
K∑
n=1

bK,n(γ)2

)−1/2 K∑
n=1

bK,n(γ)zk,

where for n = 2, 3, . . . ,

bK,1(γ) :=
1√
2

(1− 2aK(γ)), aK(γ) :=

K∑
k=1

(−1)k−1

(1 + γk)3
and bK,n(γ) :=

√
n(n+ 1)

K∑
k=1

(−1)k−1(γk)n−1

(1 + γk)3
.

If K is sufficiently large, the distribution of Ġ(·;K) is close to that of Ġ(·) as can be easily affirmed by simulations.

We conduct Monte Carlo Simulations for the LSTAR case as in the ESTAR case. The only aspect different from

the ESTAR case is that the DGP is the one defined in the beginning of this section. Simulation results are summarized

into Figure 2. We use the same parameter spaces Γ = Γi, i = 1, ..., 4, as before, and we can see that the empirical

distribution and PDF estimate of the QLR test approach the null limit distribution and its PDF that are obtained using

Ġ(·;K) with K = 2, 500. This shows that the theory in Section 2 is also valid for the LSTAR model. When the

parameter space Γ for γ becomes even larger, we obtain similar results. To save space, they are not reported.

3.3 Application of the Weighted Bootstrap

The standard approach to obtaining the null limit distribution of the QLR test is not applicable for empirical analysis

because it requires knowledge of the error distribution. Without this information it is not possible in practice to obtain

a distributionally equivalent Gaussian process. Hansen’s (1996) weighted bootstrap is useful for this case. We apply it

to our models as in Cho and White (2010), Cho, Ishida, and White (2011, 2014), and Cho, Cheong, and White (2011).

Although the relevant weighted bootstrap is available in Cho, Cheong, and White (2011), we provide here a

version adapted to the structure of the STAR model. We consider the previously studied ESTAR and LSTAR models

and proceed as follows. First, we compute the following score for each grid point of γ ∈ Γ:

W̃n(γ) :=
1

n

n∑
t=1

ũ2
n,tf

2
t (γ)ztz

′
t −

1

n

n∑
t=1

ũ2
n,tft(γ)ztz

′
t

[
1

n

n∑
t=1

ũ2
n,tztz

′
t

]−1
1

n

n∑
t=1

ũ2
n,tft(γ)ztz

′
t,

d̃n,t(γ) := ztft(γ)ũn,t −
1

n

n∑
t=1

ũ2
n,tft(γ)ztz

′
t

[
1

n

n∑
t=1

ũ2
n,tztz

′
t

]−1

ztũn,t,

where ũn,t := yt − yt−1θ̃n, and θ̃n is the least squares estimator of θ from the null model. Here, ft(γ) = 1 −

exp(−γy2
t−1) for ESTAR and ft(γ) = {1 + exp(γyt−1)}−1 − 1/2 for the LSTAR model. Second, given these

functions, we construct the following score function and pseudo-QLR test statistic:

QLRb,n := sup
γ∈Γ

(
1√
n

n∑
t=1

s̃n,t(γ)

)′(
1√
n

n∑
t=1

s̃n,t(γ)

)
and s̃n,t(γ) := {W̃n(γ)}−1/2d̃n,t(γ)zb,t,

where zb,t ∼ IID N(0, 1) with respect to b and t, b = 1, 2, . . . , B, and B is the the number of bootstrap replications.
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Third, we estimate the empirical p-value by p̂n := B−1
∑B
b=1 I[QLRn < QLRb,n], where I[·] is the indicator

function. We set B = 300 to obtain p̂(i)
n with i = 1, 2, . . . , 2, 000. Finally, for a specified nominal value of α, we

compute 1
2000

∑2000
i=1 I[p̂(i)

n < α]. When the null hypothesis holds, this proportion converges to α.

The results are displayed in the percentile-percentile (PP) plots for the ESTAR and LSTAR models in Figures

3 (ESTAR) and 4 (LSTAR). The horizonal unit interval stands for α, and the vertical unit interval is the space of

p-values. As a function of α, the aforementioned proportion should converge to the 45-degree line under the null

hypothesis. As before, the four parameter spaces are considered: Γ = Γi, i = 1, ..., 4. The results are summarized as

follows. First, as a function of α, the proportion 1
2000

∑2000
i=1 I[p̂(i)

n < α] does converge to the 45-degree line. Second,

the empirical rejection rates estimated by the weighted bootstrap are closest to the nominal levels when the parameter

space is small. Although the overall finite sample level distortions are smaller for the ESTAR model than the LSTAR

model, the empirical rejection rate is close to the nominal significance level if α is close to zero. Finally, as the size of

the parameter space increases, more observations are needed to better approximate the 45-degree line in the PP plots.

We have conducted simulations using even larger parameter spaces and obtained similar results. We omit reporting

them for brevity.

4 Empirical Application

In this section, we illustrate use of the QLR test statistic using three empirical examples and compare the results

with those obtained using the LM statistic proposed by Luukkonen, Saikkonen, and Teräsvirta (1988) and applied

by Granger and Teräsvirta (1993) and Teräsvirta (1994), among others. This comparison is designed to demonstrate

that the QLR and LM tests can complement each other. The p-values of the QLR and LM tests are computed by the

weighted bootstrap and the methodology for the F -test statistic in Teräsvirta (1994), respectively.

The three empirical examples in this section have parallel structures. We briefly review the model framework for

the LM test statistics. The following auxiliary model is first estimated for the LM test statistics:

MAUX := {hAUX( · ;α0, α1, α2, α3, α4) : (α′0, α
′
1, α
′
1, α
′
1, α
′
1)′ ∈ Θ},

where hAUX(zt;α0, α1, α2, α3, α4) := α′0zt + α′1(z̃ttt) + α′2(z̃tt
2
t ) + α′3(z̃tt

3
t ) + α′4(z̃tt

4
t ), and tt is the transition

variable, viz., z̃′tα. This auxiliary model is obtained by applying a fourth-order Taylor’s expansion to the analytic

function as an intermediate step to compute the LM test statistics conveniently. Although this auxiliary model is

different from the STAR model, testing the coefficients of nonlinear components by the LM test statistics turns out

to be equivalent to computing the LM test statistics that test the STAR model assumption under H02. Luukkonen,

Saikkonen, and Teräsvirta (1988) and Teräsvirta (1994) provide detailed rationales of this equivalence.

We consider the following four sets of hypotheses as common hypotheses of the three empirical examples:

H0,1 : α1∗ = α2∗ = α3∗ = 0|α4∗ = 0; vs. H1,1 : α1∗ 6= 0, α2∗ 6= 0, or α3∗ 6= 0|α4∗ = 0.
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H0,2 : α1∗ = α2∗ = α3∗ = α4∗ = 0; vs. H1,2 : α1∗ 6= 0, α2∗ 6= 0, α3∗ 6= 0, or α4∗ 6= 0.

H0,3 : α1∗ = α3∗ = 0; vs. H1,3 : α1∗ 6= 0 or α3∗ 6= 0.

H0,4 : α2∗ = α4∗ = 0; vs. H1,4 : α2∗ 6= 0 or α4∗ 6= 0.

These hypotheses are specified by following Teräsvirta (1994) and Escribano and Jordà (1999). We denote the LM test

statistics testing H0,i as LMi,n, i = 1, ..., 4. LM1,n and LM2,n are general tests against STAR. On the other hand,

LM3,n and LM4,n are tests against the LSTAR and ESTAR models, respectively. The QLR statistic against ESTAR

is denoted by QLREn the one against LSTAR is called QLRLn .

4.1 Example 1: German Money Demand

We first consider the German money demand function as examined by Lütkepohl, Teräsvirta, and Wolters (1999).

The authors were interested in the stability of this function from 1960Q1 to 1996Q4 and possible nonlinearity. Given

that German unification in July 1990 might have affected the money demand function in addition to major monetary

policy changes in 1970s, they wanted to check whether these events brought structural changes for German money

demand function that could be captured by a nonlinear function. Using LM statistics, they tested for nonlinearity and

concluded that the money demand was stable and linear over the period of observation.

We revisit the issue using the data provided by the authors.1 Following their approach we first let yt and zt

be ∆mt and [1,∆gt,∆gt−1,∆gt−2,∆rt,∆rt−1,∆pt,∆pt−1, z
∗
t−1]′, respectively, where mt is the log of per capita

money stock (M1), gt is the log of real per capita gross national product (GNP), pt is the log of the GNP deflator

with 1986 as the base-year, and rt is the long-term interest rate. Here, z∗t is the co-integration residual obtained by

estimating the error-correction model for integrated variables mt, gt, g∗t and rt:

z∗t = mt − δ1gt − δ2g∗t − δ3rt,

where g∗t := I(t ≥ 1990Q3)gt. The step dummy variable I(t ≥ 1990Q3) multiplying gt is intended to accommo-

date the effect of incorporating the East German economy and population to the per capita GNP due to the German

unification. Their STAR model has the following form:

yt = z′tπ + β1d1,t + β2d2,t + β3d3,t + γ1d
∗
1,t + γ2d

∗
2,t + γ3d

∗
3,t + z′tθf(z̃′tα; γ) + ut,

where d1,t, d2,t, and d3,t denote seasonal dummies. The other set of dummies, d∗1,t := I(t ≥ 1990Q3)d1,t, d∗2,t :=

I(t ≥ 1990Q3)d2,t, and d∗3,t := I(t ≥ 1990Q3)d3,t are included to account for changes in seasonality due to the

unification.

1The data are available in the data archive of the Journal of Applied Econometrics: <http://qed.econ.queensu.ca/jae/1999-v14.
5/lutkepohl-terasvirta-wolters/>. The data are not exactly the same data as used in Lütkepohl, Teräsvirta, and Wolters (1999). They
used 1991-based GDP deflator series, whereas the provided data are constructed using the 1986-based GDP deflator. By this, estimated parameters
are slightly different, although negligible.
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We perform the same LM tests and report the p-values in Table 1. Most p-values are more or less the same as the

ones in Lütkepohl, Teräsvirta, and Wolters (1999). The differences are due to the use of a 1986-based GNP deflator,

whereas they used one with the base year 1991. Out of the p-values reported in Table 1, only LM1,n is significant at

the 5% significance level when the transition variable is ∆pt.

Lütkepohl, Teräsvirta, and Wolters (1999) did not apply the statistics LM2,n, LM3,n, and LM4,n. They generally

agree with the results from LM1,n in that LM2,n and LM3,n detect nonlinearity at the 5% level when the transition

variable is ∆pt. The fact that the p-value ofLM3,n is clearly less than that ofLM4,n points towards the LSTAR model.

The results from QLRLn largely agree with what is obtained using LM1,n, LM2,n and LM3,n. The only diffeence is

that linearity is also rejected at the 5% level when the transition variable is ∆gt−1. But then, QLREn testing against

ESTAR strongly rejects linearity for three transition variables for which no rejection is found by the LM statistics

including LM4,n. Interestingly, it yields a high p-value when the transition variable is ∆pt. Thus we can conclude

that the QLR tests complement the picture by providing information that the LM tests do not contain.

4.2 Example 2: US Unemployment Rates

Next we study performance of the tests when applied to the monthly US unemployment rate. van Dijk, Teräsvirta, and

Franses (2002) tested linearity of this series using observations from June 1968 to December 1999. We use the same

dataset and compare their LM test statistics with our QLR test statistics. We also extend the series to August 2015 and

perform the same tests. Figure 5 shows the US unemployment rate for the extended period.2

van Dijk, Teräsvirta, and Franses (2002) point out that the US unemployment rate is a persistent series with an

asymmetric adjustment process and strong seasonality. They specify a STAR model with monthly dummy variables

for first differences of the seasonally unadjusted unemployment rate of males aged 20 and over . They test linearity

against STAR assuming that the transition variable is a lagged twelve-month difference of the unemployment rate. The

alternative (STAR) model has the following form (the lag length has been determined by AIC):

∆yt = π0 + π1yt−1 +

15∑
p=1

πp+2∆yt−p +

11∑
k=1

π17+kdt,k

+

[
θ0 + θ1yt−1 +

15∑
p=1

θp+2∆yt−p +

11∑
k=1

θ17+kdt,k

]
f(∆12yt−d; γ) + ut,

where yt is the monthly US unemployment rate in question, ∆yt is the first difference of yt, f(·, ·) is a nonlinear

transition function, ∆12yt is the twelve-month difference of yt, dt,k is the dummy for month k, and ut ∼ iid(0, σ2).

The twelve-month difference ∆12yt−d is not included as an explanatory variable in the null (linear) model. The theory

in Section 2 can nonetheless be used without modification because a null model including ∆12yt−d can be thought

of having a zero coefficient for this variable. Following van Dijk, Teräsvirta, and Franses (2002), we test linearity by

using ∆12yt−d, d = 1, 2, . . . , 6, as the transition variable.

2The data set used by van Dijk, Teräsvirta, and Franses (2002) is available at <http://swopec.hhs.se/hastef/abs/hastef0380.
htm> that was originally retrieved from the Bureau of Labor Statistics.
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Our test results using the same series as van Dijk, Teräsvirta, and Franses (2002) can be found in the top panel of

Table 2. Both the LM tests andQLRLn reject linearity when d = 2, and, besides, LM3,n that has power against LSTAR

yields p = 0.057 for d = 2. The p-values of QLRLn , however, lie at or below 0.05 for all six lags, suggesting that at

least in this particular case this test is more powerful than the LM tests. The smallest p-value is even here attained for

d = 2. The results from QLREn are quite different and do not suggest any rejection at customary significance levels.

This makes sense as this statistic is designed for ESTAR alternatives, and asymmetry in the unemployment rate is best

described by an LSTAR model.

The bottom panel of Table 2 contains the results from the series extended to August 2015.3 Now there seems to

be plenty of evidence of asymmetry: all p-values of LM1,n are rather small. LM3,n also has small values for the first

three lags, as has LM2,n. The p-values from QLRLn are smallest of all, which is in line with the results in the top

panel. Even QLREn rejects the null of linearity at the 5% level for d = 1, 2, 3. This outcome may be expected because

the QLR statistics are omnibus tests and as such respond to any deviation from the null hypothesis as the sample size

increases. Note, however, that even LM4,n now yields two p-values (d = 2, 3) that lie below 0.05, although the test

does not have the omnibus property. The behaviour of the unemployment rate during and after the financial crisis (a

quick upswing and slow decrease) has probably contributed to theses results.

4.3 Example 3: German Industrial Production

Finally, we examine the growth rate of the seasonally adjusted logarihmic quarterly German industrial production.

Teräsvirta (1994) tested linearity of this series against STAR using the LM test and observations from 1961Q1 to

1986Q1. As in the previous examples, we compare these results with the ones obtained using our QLR test statistics.4

Following Teräsvirta (1994) we select the ninth-order autoregressive process as the null model by applying the

AIC and let the transition variable be the lagged dependent variable for d = 1, ..., 9 . The null model is (14) with

γi = 0, i = 0, 1, ...,m. The p-values of the LM and QLR test statistics can be found in the first panel of Table 3.

The p-values of both LM1,n and LM2,n test statistics are less than 5% level when d = 6. Furthermore, the p-value of

LM3,n is 0.063 for this lag. The corresponding p-values for LM4,n are clearly higher than those from the other LM

tests. Thus the evidence points towards the LSTAR model. On the other hand, the evidence against the null hypothesis

according to the QLR tests is rather weak. It seems that LM4,n and QLREn both agree that there is no evidence in the

series supporting an ESTAR specification. The QLRLn statistic seems to offer even less evidence against linearity than

LM1,n and LM2,n do.

We next increase the time span to 2015Q1 from the same motivation as in the previous subsection. We specify a

model different from the model for 1961Q1 to 1986Q1 to accommodate the Germany reunification effect. Merging

the East-German industrial production with the West-German one caused a shift in the series, and this was taken into

3The recent observations of the monthly US unemployment rate are available at <http://beta.bls.gov/dataViewer/view/
timeseries/LNU04000025>.

4The data are collected from the OECD main economic indicators: <https://data.oecd.org/industry/
industrial-production.htm>.
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account by introducing the step dummyDt := I[t ≥ 1990Q3]. The resulting linear null model has the following form:

∆yt = β0 +

k∑
j=1

βjyt−j + γ0Dt +

m∑
j=1

γjDtyt−j + ut, (14)

where yt = ln(Yt), and Yt denotes the original seasonally adjusted time series. The lag lengths k = 6 and m = 2 are

determined by AIC. The transition variable is ∆yt−d, d = 1, ..., 6. The test results can be found in the bottom panel

of Table 3.

Increasing the sample size brings more evidence against the null hypothesis. All LM tests now strongly reject the

for the first two lags. The results are ambiguous in the sense that both LM1,n and LM2,n yield strong rejections at

these two lags and have a p-value below 0.05 also when d = 4. The statistic QLRLn rejects the null hypothesis slightly

more often than QLREn , but the smallest p-values in both occur at different lags except for d = 4. The deep trough

in the growth rate around 2008–2009 may have contributed to this ambiguity. Interestingly, the LM tests now provide

more information against linearity than the two omnibus statistics QLRLn and QLREn . This seems to suggest that the

QLR statistics do not necessarily dominate their LM counterparts when it comes to power. Rather, it might be better

to view these two types of tests as complementing each other.

5 Conclusion

The current study examines the null limit distribution of the QLR test statistic for neglected nonlinearity using the

STAR model. The QLR test statistic contains a twofold identification problem under the null, and we explicitly

examine how the twofold identification problem affects the null limit distribution of the QLR test statistic. We show

that the QLR test statistic is shown to converge to a functional of a multidimensional Gaussian stochastic process under

the null of linearity by extending the testing scope of the LM test statistic in Luukkonen, Saikkonen, and Teräsvirta

(1988), Teräsvirta (1994) and Granger and Teräsvirta (1993).

We further illustrate our theory on the QLR test statistic to ESTAR and LSTAR models and affirm our theory by

obtaining the null limit critical values and conducting Monte Carlo simulations. Finally, three empirical examples are

revisited by comparing the QLR and LM test statistics, and we demonstrate how to complement each test statistic.

6 Appendix

Proof of Lemma 1: (i) Given Assumptions 1, 2, 3, and 5, it is trivial to show that σ̂2
n,0

a.s.→ σ2
∗ by the ergodic theorem.

(ii) The null limit distribution of QLR(1)
n is determined by the two terms in (2): Z ′F (·)Mu and Z ′F (·)MF (·)Z.

We examine their null limit behaviour one by one and combine the limit results using the converging-together lemma

in Billingsley (1999, p. 39).

(a) We show the weak convergence part of n−1/2Z ′F (·)Mu. Using the definition of M := I − Z(Z ′Z)−1Z ′ we

have Z ′F (γ)Mu = Z ′F (γ)u− Z ′F (γ)Z(Z ′Z)−1Z ′u, and we now examine the components on the right-hand side
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of this equation separately. For each γ ∈ Γ, we define

f̂n,t(γ) := ft(γ)utzt −

(
n∑
t=1

ft(γ)ztz
′
t

)(
n∑
t=1

ztz
′
t

)−1 n∑
t=1

ztut,

f̃n,t(γ) := ft(γ)utzt − E[ft(γ)ztz
′
t]E[ztz

′
t]
−1

n∑
t=1

ztut

and show that

sup
γ∈Γ(ε)

∥∥∥∥∥n−1/2
n∑
t=1

[
f̂n,t(γ)− f̃n,t(γ)

]∥∥∥∥∥
∞

= oP(1), (15)

where Γ(ε) := {γ ∈ Γ : |γ| ≥ ε} and ‖ · ‖∞ is the uniform matrix norm. We have

sup
γ∈Γ(ε)

∥∥∥∥∥ 1√
n

n∑
t=1

[
f̂n,t(γ)− f̃n,t(γ)

]∥∥∥∥∥
∞

≤ sup
γ∈Γ(ε)

∥∥∥∥∥∥
(
n−1

n∑
t=1

ft(γ)ztz
′
t

)
(
n−1

n∑
t=1

ztz
′
t

)−1

− E[ztz
′
t]
−1

n−1/2
n∑
t=1

ztut

∥∥∥∥∥∥
∞

+ sup
γ∈Γ(ε)

∥∥∥∥∥
{(

n−1
n∑
t=1

ft(γ)ztz
′
t

)
− E[ft(γ)ztz

′
t]

}
E[ztz

′
t]
−1n−1/2

n∑
t=1

ztut

∥∥∥∥∥
∞

. (16)

We show that each term on the right-hand side of (16) is oP(1). Now, {ztut,Ft} is a martingale difference sequence,

where Ft is the smallest sigma-field generated by {ztut, zt−1ut−1, . . .}. Therefore, E[ztut|Ft−1] = 0,

E[|Zt,jut|2] = E[u4
t ]

1/2E[|Zt,j |4]1/2 ≤ E[m4
t ]

1/2E[Z4
t,j ]

1/2 <∞,

and E[u2
t ztz

′
t] is positive definite. Thus, n1/2

∑n
t=1 ztut is asymptotically normal. Next, we note that n−1/2

∑n
t=1

ft(γ)utzt is also asymptotically normal. This follows from the fact that {ft(γ)utzt,Ft} is a martingale differ-

ence sequence, and for each j, |ft(γ)utzt,j |2 ≤ m6
t , and E[m6

t ] < ∞ by Assumptions 4 and 5. Furthermore,

supγ∈Γ

∥∥n−1
∑n
t=1 ft(γ)ztz

′
t − E[ft(γ)ztz

′
t]
∥∥
∞ = oP(1) by Ranga Rao’s (1962) uniform law of large numbers.

Thus,

sup
γ∈Γ(ε)

∥∥∥∥∥
{
n−1

n∑
t=1

ft(γ)ztz
′
t − E[ft(γ)ztz

′
t]

}
E[ztz

′
t]
−1n−1/2

n∑
t=1

ztut

∥∥∥∥∥
∞

= oP(1). (17)

This shows that the second term of (16) is oP(1). We now demonstrate that the first term of (16) is also oP(1). By

Assumption 4 and the ergodic theorem, we note that∥∥∥∥∥n−1
n∑
t=1

ztz
′
t − E[ztz

′
t]

∥∥∥∥∥
∞

= oP(1),

∣∣∣∣∣
n∑
t=1

ft(γ)zt,jzt,i

∣∣∣∣∣ ≤
n∑
t=1

m3
t = OP(n)

so that (17) follows, leading to (15). Therefore, n−1/2Z ′F (γ)Mu
A∼ N [0, B1(γ, γ)] by noting that E[f̃n,t(γ)f̃n,t(γ)′] =
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B1(γ, γ). Using the same methodology, we can show that for each γ, γ̃ ∈ Γ(ε),

1√
n

 Z ′F (γ)Mu

Z ′F (γ̃)Mu

 A∼ N

 0

0

 ,

 B1(γ, γ) B1(γ, γ̃)

B1(γ̃, γ) B1(γ̃, γ̃)

 .
Finally, we have to show that {f̃n,t(·)} is tight. First note that by Assumptions 1, 2, and 4, it follows that

|ft(γ)zt,jut − ft(γ̃)zt,jut| ≤ mt |zt,jut| |γ − γ̃| for each j. From this we obtain

sup
|γ−γ̃|<η

|ft(γ)zt,jut − ft(γ̃)zt,jut|2+ω ≤ m2+ω
t |zt,jut|2+ωη2+ω ≤ m6+3ω

t η2+ω,

so that

E

[
sup
|γ−γ̃|<η

|ft(γ)zt,jut − ft(γ̃)zt,jut|2+ω

] 1
2+ω

≤ E[m6+3ω
t ]

1
2+ω η.

for each j. This implies that {n−1/2ft(·)zt,jut} is tight because Ossiander’s L2+ω entropy is finite.

Next, for some c > 0,

∥∥E[ft(γ)ztz
′
t]E[ztz

′
t]
−1ztut − E[ft(γ̃)ztz

′
t]E[ztz

′
t]
−1ztut

∥∥
∞

=
∥∥E[{ft(γ)− ft(γ̃)}ztz′t]E[ztz

′
t]
−1ztut

∥∥
∞ ≤ cm

2
t

∥∥E[ztz
′
t]
−1
∥∥
∞ ‖E[{ft(γ)− ft(γ̃)}ztz′t]‖∞ ,

by the property of the uniform norm and Assumption 5. Also note that ‖E[ft(γ)ztz
′
t − ft(γ̃)ztz

′
t]‖∞ ≤ ‖E[{ft(γ)−

ft(γ̃)}ztz′t]‖1 and by Assumption 4, for each i, j = 1, 2, . . . ,m + 1, |zt,jzt,i[ft(γ) − ft(γ̃)]| ≤ m3
t |γ − γ̃|, where

‖[gi,j ]‖1 :=
∑
i

∑
j |gi,j |. Therefore,

∥∥E[ft(γ)ztz
′
t]E[ztz

′
t]
−1ztut − E[ft(γ̃)ztz

′
t]E[ztz

′
t]
−1ztut

∥∥
∞

≤ cm2
t

∥∥E[ztz
′
t]
−1
∥∥
∞ ‖E[{ft(γ)− ft(γ̃)}ztz′t]‖∞ ≤ c(m+ 1)2m2

t

∥∥E[ztz
′
t]
−1
∥∥
∞ E[m3

t ]|γ − γ̃|. (18)

This inequality (18) implies that {n−1/2E[ft(·)ztz′t]E[ztz
′
t]
−1ztut} is also tight. Hence, it follows that for some

b <∞,

E

[
sup
|γ−γ̃|<η

|f̃t(γ)− f̃t(γ̃)|2+ω

]
≤ b · η.

That is, {n−1/2
∑n
t=1 f̃n,t(·)} is tight. From this and the fact that the finite-dimensional multivariate CLT holds, the

weak convergence of {n−1/2
∑n
t=1 f̃n,t(·)} is established.

(b) Next, we examine the limit behaviour of n−1Z ′F (·)F (·)Z. For this purpose, we note that

1

n
Z ′F (γ)F (γ)Z =

1

n

n∑
t=1

ft(γ)2ztz
′
t −

{
1

n

n∑
t=1

ft(γ)ztz
′
t

}{
1

n

n∑
t=1

ztz
′
t

}−1{
1

n

n∑
t=1

ft(γ)ztz
′
t

}
,
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and, given Assumptions 1, 2, 3, 4, and 6, by Ranga Rao’s (1962) uniform law of large numbers we have

sup
γ∈Γ(ε)

∥∥∥∥∥n−1
n∑
t=1

ft(γ)2ztz
′
t − E[ft(γ)2ztz

′
t]

∥∥∥∥∥ a.s.→ 0, sup
γ∈Γ(ε)

∥∥∥∥∥n−1
n∑
t=1

ft(γ)ztz
′
t − E[ft(γ)ztz

′
t]

∥∥∥∥∥ a.s.→ 0.

Therefore, given
∥∥n−1

∑n
t=1 ztz

′
t − E[ztz

′
t]
∥∥
∞ = oP(1), it follows that

sup
γ∈Γ(ε)

∣∣n−1Z ′F (γ)MF (γ)Z − {E[ft(γ)2ztz
′
t]− E[ft(γ)ztz

′
t]E[ztz

′
t]
−1E[ft(γ)ztz

′
t]}
∣∣ = oP(1).

Applying the converging-together lemma yields the desired result.

(iii) This result trivially follows from the fact that E[u2
t |zt] = σ2

∗. �

Proof of Lemma 2: Given Assumption 2, H02, and the definition of Hj(γ), the j-th order derivative of L(2)
n ( · ; θ) is

obtained as

∂j

∂γj
L(2)
n (γ; θ) = −

j∑
k=0

(
j

k

){
∂k

∂γk
(y − F (γ)Zθ)′

}
M

{
∂j−k

∂γj−k
(y − F (γ)Zθ)

}

= 2θ′Z ′Hj(γ)Mu−
j−1∑
k=1

(
j

k

)
θ′Z ′Hj(γ)MHj−k(γ)Zθ (19)

by iteratively applying the general Leibniz rule. We now evaluate this derivative at γ = 0. Note that Hj(0) = 0 if

j < κ by the definition of κ. This implies that (∂j/∂γj)L(2)
n (0; θ) = 0 for j = 1, 2, . . . , κ− 1. This also implies that(

j
k

)
θ′Z ′Hj(0)MHj−k(0)Zθ = 0 for j = κ, κ+ 1, . . ., 2κ− 1. Therefore, ∂j

∂γjL
(2)
n (0; θ) = 2θ′Z ′Hj(0)Mu. Finally,

we examine the case in which j = 2κ. For each j < 2κ, Hj(0) = 0 and Hκ(0) 6= 0, so that the summand of the

second term in the right side of (19) is different from zero only when j = 2κ and k = κ:

∂2κ

∂γ2κ
L(2)
n (0; θ) = 2θ′Z ′H2κ(γ)Mu−

(
2κ

κ

)
θ′Z ′Hκ(γ)MHκ(γ)Zθ.

This completes the proof. �

Proof of Lemma 3: Given Assumptions 1, 2, 7, andH02, we note that

QLR(2)
n := sup

θ
QLR

(2)

n (θ) = sup
θ

sup
ς

1

σ̂2
n,0

[
2{θ′G′κu}ςκ

κ!
√
n

− 1

(2κ)!n

{(
2κ

κ

)
θ′G′κGκθ

}
ς2κ
]

+ oP(n). (20)

Then, the FOC with respect to ς implies that

ς̂κn(θ) =

 Wn(θ), if κ is odd;

max[0,Wn(θ)] if κ is even

by noting that ς̂κn(θ) cannot be negative. If we plug ς̂κn(θ) back into the right side of (20), the desired result follows. �

Proof of Lemma 4: Before proving Lemma 4, we first show that for each j, Z ′Hj(0)Mu = OP(n1/2), so that
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j = κ+ 1, . . . , 2κ− 1, Z ′Hj(0)Mu = oP(nj/2κ). Note that for j = κ+ 1, . . . , 2κ,

Z ′HjMu =

n∑
t=1

ztht,j(0)ut −
n∑
t=1

ztht,j(0)z′t

(
n∑
t=1

ztz
′
t

)−1 n∑
t=1

ztut.

First we apply the ergodic theorem to n−1
∑
t ztht,j(0)z′t and n−1

∑
t ztz

′
t, respectively. Second, given Assumptions

1, 2, 3, 7, and 8, following the proof of Lemma 1, we have that n−1/2
∑
t ztut is asymptotically normal. Furthermore,

for all j = κ + 1, . . . , 2κ, we show that n−1/2
∑
t ztht,j(0)ut is asymptotically normal. To do this, first note that

{ztht,j(0)ut,Ft} is a martingale difference sequence, so that for each j, E[ztht,j(0)ut|Ft−1] = 0. Next, we prove

that for each j, E[z2
t,ih

2
t,j(0)u2

t ] <∞. First note that using the moment conditions in Assumption 7,

E[|z2
t,ih

2
t,j(0)u2

t |] ≤ E[|ut|4]1/2E[|h2
t,j(0)z2

t,i|2]1/2 ≤ E[|ut|4]1/2E[|ht,j(0)|8]1/4E[|zt,i|8]1/4 <∞

by the Cauchy-Schwarz’s inequality. For the same reason,

E[|z2
t,ih

2
t,j(0)u2

t |] ≤ E[|utht,j(0)|4]1/2E[|zt,i|4]1/2 ≤ E[|ut|8]1/2E[|ht,j(0)|8]1/2E[|zt,i|4]1/2 <∞.

By Assumption 8, E[u2
t ztht,j(0)2z′t] is positive definite. It then follows by Theorem 5.25 of White (2001) that

n−1/2
∑
t ztht,j(0)ut is asymptotically normal. Thus, Z ′Hj(0)Mu = OP(n1/2).

We now consider the statements (i)–(iii).

(i) First, we show that θ′Z ′Hκ(0)Mu = OP(n1/2). By the definition of M ,

Z ′Hκ(0)Mu =

n∑
t=1

ztht,κ(0)ut −
n∑
t=1

ztht,κ(0)z′t

(
n∑
t=1

ztz
′
t

)−1 n∑
t=1

ztut. (21)

We examine all sums on the right-hand side of (21). First, ht,κ(0) is a function of zt, which implies that, given

the moment condition in Assumption 7, n−1
∑
ztht,κ(0)z′t obeys the ergodic theorem. Second, similarly under

Assumptions 1, 2, 3, 7, 8, and H02, n−1
∑
ztz
′
t also obeys the ergodic theorem. Third, given the assumptions

and the proof of Lemma 1, we have already proved that n−1/2
∑
ztut is asymptotically normally distributed. Fi-

nally, n−1/2
∑
ztht,κ(0)ut is asymptotically normal, and the proof is similar to that of the asymptotic normality of

n−1/2
∑
t ztht,j(0)ut (j = κ+ 1, . . . , 2κ). All these facts imply that Z ′Hκ(0)Mu = OP(n1/2).

(ii) n−1G′κGκ
a.s.→ A2 by the ergodic theorem.

(iii) Note that

Z ′Hκ(0)MHκ(0)Z =

n∑
t=1

ztht,κ(0)2z′t −
n∑
t=1

ztht,κ(0)z′t

(
n∑
t=1

ztz
′
t

)−1 n∑
t=1

ztht,κ(0)z′t. (22)

The limit of (22) is revealed by applying the ergodic theorem to each term on the right-hand side of this expression.
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Consequently, n−1Z ′Hκ(0)MHκ(0)Z
a.s.→ E[gt,κg

′
t,κ], where

E[gt,κg
′
t,κ] := E[ztH2κ(0)2z′t]− E[ztH2κ(0)z′t]E[ztz

′
t]
−1E[ztH2κ(0)z′t].

This completes the proof. �

Proof of Lemma 7: The distributional equivalence between Ġ(·) and G̈(·) can be established by showing that for all γ,

γ̃ ≥ 0, E[G̈(γ)G̈(γ̃)] = E[Ġ(γ)Ġ(γ̃)]. We will proceed in three steps. First, we derive the functional form of ρ̈(γ, γ̃).

We show that if γ, γ̃ > 0, then k̈1(γ, γ̃) =
∑∞
n=1 bn(γ)bn(γ̃). This in turn implies that for γ, γ̃ > 0,

ρ̈(γ, γ̃) =

∑∞
n=1 bn(γ)bn(γ̃)

k̈1(γ, γ)1/2k̈1(γ̃, γ̃)1/2
.

It follows that the specific functional form of ρ̈(γ, γ̃) can be obtained from this result and (12).

Second, similarly for all γ, γ̃ ≥ 0, we derive the functional form of ρ̇(γ, γ̃) and compare it to ρ̈(γ, γ̃). To do all

this, we first note that for all γ, γ̃ > 0,

k̈1(γ, γ̃) =
1

4
E
[
y2
t−1 tanh

(γyt−1

2

)
tanh

(
γ̃yt−1

2

)]
− 1

4
E
[
y2
t−1 tanh

(γyt−1

2

)]
E[y2

t−1]−1E
[
y2
t−1 tanh

(
γ̃yt−1

2

)]
,

=
1

4
E
[
y2
t−1 tanh

(γyt−1

2

)
tanh

(
γ̃yt−1

2

)]
. (23)

This follows from that fact that for any x ∈ R, tanh(x) = − tanh(−x) and that yt follows the Laplace distribution

with mean zero and variance 2, so that E
[
y2
t tanh (γyt/2)

]
= 0. Given this, we can apply the Dirichlet series to

tanh(·) to obtain the functional form of k̈1(·, ·). Thus, for any x ∈ R,

tanh(x) = sgn(x)

(
1− 2

∞∑
k=0

(−1)k exp(−2|x|(k + 1))

)

and, furthermore, that

E
[
s2
t exp(−stγk)

]
=

2

(1 + γk)3
and E[s2

t ] = 2,
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where st := |yt| follows the exponential distribution with mean 1 and variance 2. Applying these to (23) yields

k̈1(γ, γ̃) = E
[
y2
t

4
tanh

(γyt
2

)
tanh

(
γ̃yt
2

)]
= E

[
s2
t

4

]
− E

[
s2
t

2

∞∑
k=1

(−1)k−1 exp(−sγk)

]
− E

[
s2
t

2

∞∑
k=1

(−1)k−1 exp(−sγ̃k)

]

+ E

s2
t

∞∑
j=1

∞∑
k=1

(−1)k+j−2 exp(−st(γk + γ̃j))


=

1

2
−
∞∑
k=1

(−1)k−1

(1 + γk)3
−
∞∑
k=1

(−1)k−1

(1 + γ̃k)3
+

∞∑
j=1

∞∑
k=1

(−1)j+k−2 2

(1 + γk + γ̃j)3
.

Next, for |x| < 1 we have
1

(1− x)3
=

∞∑
n=1

n(n+ 1)

2
xn−1

so that
1

(1 + γk + γ̃j)3
=

1

(1 + γk)3(1 + γ̃j)3
(

1− γk
1+γk

γ̃j
1+γ̃j

)3 ,

where
1(

1− γk
1+γk

γ̃j
1+γ̃j

)3 =

∞∑
n=1

n(n+ 1)

2

(
γk

1 + γk

γ̃j

1 + γ̃j

)n−1

.

Therefore,

k̈1(γ, γ̃) =
1

2
−
∞∑
k=1

(−1)k−1

(1 + γk)3
−
∞∑
k=1

(−1)k−1

(1 + γ̃k)3

+

∞∑
n=1

∞∑
j=1

∞∑
k=1

(−1)j+k−2n(n+ 1)
(γk)n−1

(1 + γk)n+2

(γ̃j)n−1

(1 + γ̃j)n+2
.

Furthermore,

∞∑
n=1

∞∑
j=1

∞∑
k=1

(−1)j+k−2n(n+ 1)
(γk)n−1

(1 + γk)n+2

(γ̃j)n−1

(1 + γ̃j)n+2

= 2

∞∑
k=1

(−1)k−1

(1 + γk)3

∞∑
j=1

(−1)j−1

(1 + γ̃j)3
+

∞∑
n=2

n(n+ 1)

∞∑
k=1

(−1)k−1(γk)n−1

(1 + γk)n+2

∞∑
j=1

(−1)j−1(γ̃j)n−1

(1 + γ̃j)n+2

= 2a(γ)a(γ̃) +

∞∑
n=2

bn(γ)bn(γ̃),

where for n = 2, 3, . . .,

a(γ) :=

∞∑
k=1

(−1)k−1

(1 + γk)3
and bn(γ) :=

√
n(n+ 1)

∞∑
k=1

(−1)k−1(γk)n−1

(1 + γk)n+2
.
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In particular,

b1(γ) :=
1√
2

(1− 2a(γ)),

so that

k̈1(γ, γ̃) =
1

2
− a(γ)− a(γ̃) + 2a(γ)a(γ̃) +

∞∑
n=2

bn(γ)bn(γ̃)

=
1

2
(1− 2a(γ))(1− 2a(γ̃)) +

∞∑
n=2

bn(γ)bn(γ̃)

=

∞∑
n=1

bn(γ)bn(γ̃).

Then, for each γ, γ̃ > 0,

ρ̈1(γ, γ̃) := E[G̈1(γ)G̈1(γ̃)] =

∑∞
n=1 bn(γ)bn(γ̃)

k̈1(γ, γ)1/2k̈1(γ̃, γ̃)1/2
.

In addition, for γ > 0, we examine ρ̈3(γ) := E[G̈1(γ)G̈2]. Note that from (12),

ρ̈3(γ) =
E[y3

t tanh(γyt/2)]

4
√

6k̈1(γ, γ)1/2
=

1

32
√

6γ4k̈1(γ, γ)1/2

[
48γ4 + PG

(
3, 1 +

1

2γ

)
− PG

(
3,

1 + γ

2γ

)]

as affirmed by Mathematica. It follows that the specific functional form of ρ̈(γ, γ̃) is given as

ρ̈(γ, γ̃) =


k̈1(γ,γ̃)

k̈1(γ,γ)1/2k̈1(γ̃,γ̃)1/2
, if γ > 0 and γ̃ > 0;

1, if γ = 0 and γ̃ = 0;
48γ4+PG(3,1+ 1

2γ )−PG(3, 1+γ2γ )

32
√

6γ4k̈1(γ,γ)1/2
, if γ > 0 and γ̃ = 0,

. (24)

Third, we examine the covariance kernel of Ġ(·), viz., ρ̇(·, ·). If we let γ, γ̃ > 0,

ρ̇(γ, γ̃) := E[Ġ(γ) · G(γ̃)] =

∑∞
n=1 bn(γ)bn(γ̃)

k̈1(γ, γ)1/2k̈1(γ̃, γ̃)1/2
=

k̈1(γ, γ̃)

k̈1(γ, γ)1/2k̈1(γ̃, γ̃)1/2
= ρ̈1(γ, γ̃).

Furthermore, by some tedious algebra,

plimγ↓0Z̈2
1 (γ) = 0, plimγ↓0

∂

∂γ
Z̈2

1 (γ) = 0, plimγ↓0
∂2

∂γ2
Z̈2

1 (γ) =
1

8
{3
√

2Z1 +
√

6Z2}2,

plimγ↓0k̈1(γ, γ) = 0, plimγ↓0
∂

∂γ
k̈1(γ, γ) = 0, and plimγ↓0

∂2

∂γ2
k̈1(γ, γ) = 3

so that

plimγ↓0Ġ2(γ) =

(√
3

2
z1 +

1

2
z2

)2

,

which implies

Ġ2 := plimγ↓0Ġ(γ) =

√
3

2
z1 +

1

2
z2 ∼ N(0, 1).
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Consequently, if γ > 0,

E[Ġ(γ)Ġ2] = k̈1(γ, γ)−1/2E

[
Z̈1(γ)

(√
3

2
z1 +

1

2
z2

)]
= k̈1(γ, γ)−1/2

[√
3

2
b1(γ) +

1

2
b2(γ)

]

=
1

32
√

6γ4k̈1(γ, γ)1/2

[
48γ4 + PG

(
3, 1 +

1

2γ

)
− PG

(
3,

1 + γ

2γ

)]
. (25)

The last equality follows from

b1(γ) =
1

8
√

2γ3

[
8γ3 − PG

(
2, 1 +

1

2γ

)
+ PG

(
2,

1 + γ

2γ

)]
,

b2(γ) =
1

16
√

6γ4

[
6γPG

(
2,

1

2γ

)
− 6γPG

(
2,

1 + γ

2γ

)
+ PG

(
3,

1

2γ

)
− PG

(
3,

1 + γ

2γ

)]
,

PG

(
2,

1

2γ

)
− PG

(
2, 1 +

1

2γ

)
= −16γ3, and PG

(
3,

1

2γ

)
− PG

(
3, 1 +

1

2γ

)
= 96γ4,

as obtained by Mathematica. Equation (25) then leads to the following functional form for ρ̇(γ, γ̃) := E[Ġ(γ)Ġ(γ̃)]:

ρ̇(γ, γ̃) =


k̈1(γ,γ̃)

k̈1(γ,γ)1/2k̈1(γ̃,γ̃)1/2
, if γ > 0 and γ̃ > 0;

1, if γ = 0 and γ̃ = 0;
48γ4+PG(3,1+ 1

2γ )−PG(3, 1+γ2γ )

32
√

6γ4k̈1(γ,γ)1/2
, if γ > 0 and γ̃ = 0,

which is identical to the functional form of ρ̈(·, ·) in (24). This allows the conclusion that G̈(·) has the same distribution

as Ġ(·). �

In the following, we provide additional supplementary claim in (13) that is given in the following lemma:

Lemma 8. Given the DGP and Model conditions in Section 3.2,

lim
γ̃↓0

ρ̈1(γ, γ̃)2 =

(
1

32
√

6γ4k̈1(γ, γ)1/2

[
48γ4 + PG

(
3, 1 +

1

2γ

)
− PG

(
3,

1 + γ

2γ

)])2

.

Lemma 8 implies that plimγ↓0G̈1(γ)2 = G̈2
2 , so that supγ∈Γ G̈1(γ)2 ≥ G̈2

2 and QLRn ⇒ supγ∈Γ G̈1(γ)2.

Proof of Lemma 8: From the definition of ρ̈1(γ, γ̃), we note that

ρ̈1(γ, γ̃)2 :=
k̈1(γ, γ̃)2

k̈1(γ, γ)k̈1(γ̃, γ̃)
.

Furthermore, we have

plimγ̃↓0k̈1(γ, γ̃)2 = 0, plimγ̃↓0
∂

∂γ̃
k̈1(γ, γ̃)2 = 0,

plimγ̃↓0
∂2

∂γ̃2
k̈1(γ, γ̃)2 =

(
48γ4 + PG(3, 1 + 1

2γ )− PG(3, 1+γ
2γ )

32
√

2γ4

)2

,
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plimγ̃↓0k̈1(γ̃, γ̃) = 0, plimγ̃↓0
∂

∂γ̃
k̈1(γ̃, γ̃) = 0, and plimγ̃↓0

∂2

∂γ̃2
k̈1(γ̃, γ̃) = 3

by some tedious algebra using Mathematica. This property implies that

lim
γ̃↓0

ρ̈1(γ, γ̃)2 =
1

3k̈1(γ, γ)

(
48γ4 + PG(3, 1 + 1

2γ )− PG(3, 1+γ
2γ )

32
√

2γ4

)2

=

(
1

32
√

6γ4k̈1(γ, γ)1/2

[
48γ4 + PG

(
3, 1 +

1

2γ

)
− PG

(
3,

1 + γ

2γ

)])2

.

This completes the proof. �
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TERÄSVIRTA, T., TJØSTHEIM, D., AND GRANGER, C.W.J. (2010): Modelling Nonlinear Economic Time Series.

Oxford: Oxford University Press.
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Transition Variable LM1,n LM2,n LM3,n LM4,n QLRLn QLREn
∆gt−1 0.752† 0.788 0.447 0.698 0.033 0.001
∆gt−2 0.192† 0.349 0.394 0.286 0.125 0.024
∆rt 0.076† 0.087 0.625 0.448 0.400 0.000

∆rt−1 0.904† 0.819 0.845 0.766 0.979 0.068
∆pt 0.032† 0.016 0.039 0.115 0.028 0.474

Table 1: LINEARITY TESTS FOR THE INDUSTRIAL PRODUCTION. Notes: The p-values of the linearity tests for
the German money demand function are provided. The p-values are obtained using the observations from 1960Q1 to
1996Q4, and the p-values in the second panel are obtained using the observations from 1961Q1 to 2015Q1. The data
are obtained from the data archive of the Journal of Applied Econometrics (see footnote 1). The p-values attached
by the superscript ‘†’ correspond to the p-values computed by Lütkepohl, Teräsvirta, and Wolters (1999). Boldface
p-values indicate significance levels less than or equal to 0.05.

Periods Transition Variable LM1,n LM2,n LM3,n LM4,n QLRLn QLREn

1968.06∼1999.12

∆12yt−1 0.150 0.532 0.412 0.895 0.015 0.086
∆12yt−2 0.037 0.093 0.057 0.195 0.002 0.092
∆12yt−3 0.162 0.326 0.163 0.555 0.050 0.164
∆12yt−4 0.665 0.745 0.546 0.619 0.032 0.309
∆12yt−5 0.662 0.886 0.954 0.830 0.016 0.203
∆12yt−6 0.588 0.306 0.121 0.234 0.006 0.357

1968.06∼2015.08

∆12yt−1 0.000 0.000 0.000 0.098 0.000 0.003
∆12yt−2 0.000 0.000 0.000 0.016 0.000 0.004
∆12yt−3 0.001 0.000 0.008 0.045 0.000 0.020
∆12yt−4 0.008 0.012 0.070 0.111 0.002 0.154
∆12yt−5 0.038 0.237 0.274 0.861 0.003 0.264
∆12yt−6 0.003 0.068 0.017 0.582 0.000 0.823

Table 2: LINEARITY TESTS FOR THE MONTHLY US UNEMPLOYMENT RATE. Notes: The p-values of the linearity
tests for the first differenced monthly US unemployment rate are provided. The p-values in the top panel are obtained
using observations from 1968.06 to 1999.12, and the p-values of the bottom panel are obtained using observations
from 1968.06 to 2015.08. The null linear model is given as AR(15) by AIC, and the twelve-month differences are
considered as a transition variable. Boldface p-values indicate significance levels less than or equal to 0.05.
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Periods d LM1,n LM2,n LM3,n LM4,n QLRLn QLREn

1961Q1∼1986Q1

1 0.393 0.716 0.851 0.832 0.565 0.262
2 0.129 0.209 0.389 0.377 0.121 0.053
3 0.375 0.362 0.710 0.750 0.045 0.189
4 0.233 0.184 0.091 0.192 0.275 0.247
5 0.053 0.275 0.310 0.109 0.183 0.548
6 0.015 0.0178 0.063 0.390 0.207 0.229
7 0.151 0.226 0.407 0.496 0.077 0.613
8 0.550 0.182 0.067 0.221 0.070 0.696
9 0.298 0.272 0.077 0.526 0.345 0.865

1961Q1∼2015Q1

1 0.000 0.000 0.000 0.000 0.016 0.148
2 0.000 0.000 0.000 0.000 0.057 0.020
3 0.024 0.060 0.061 0.443 0.000 0.717
4 0.140 0.020 0.044 0.048 0.033 0.050
5 0.604 0.248 0.141 0.411 0.207 0.738
6 0.158 0.264 0.498 0.503 0.168 0.190

Table 3: LINEARITY TESTS FOR THE GERMAN INDUSTRIAL PRODUCTION. Notes: The p-values of the linearity
tests for the differenced log of the quarterly German industrial production. The p-values in the top panel are obtained
using the observations from 1961Q1-1986Q1, and the p-values in the bottom panel are obtained using the observations
from 1961Q1 to 2015Q1. In particular, a dummy variable is multiplied to the lagged dependent variables to accom-
modate the Germany reunification effect to the monetary policy. The data source is OECD Main Economic Indicators.
AR(9) is selected by AIC for the first data. On the other hand, AIC selects 6 lagged dependent variables and 2 lagged
dependent variables multiplied by the dummy variable for the second data. Boldface p-values indicate significance
levels less than or equal to 0.05.
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Γ1 = [0, 2] Γ1 = [0, 2]

Γ2 = [0, 3] Γ2 = [0, 3]

Γ3 = [0, 4] Γ3 = [0, 4]

Γ4 = [0, 5] Γ4 = [0, 5]

Figure 1: EMPIRICAL NULL DISTRIBUTIONS OF THE QLR STATISTIC AND ITS NULL LIMIT DISTRIBUTION
(ESTAR MODEL CASE). Notes: (i) Number of Iterations: 5,000; (ii) DGP: yt = 0.5yt−1 +ut and ut ∼ IID N(0, 1);
(iii) Model: yt = πyt−1 + θyt−1{1 − exp(−γy2

t−1)} + ut and ut ∼ IID N(0, 1); and (iv) Γ1 = [0, 2], Γ2 = [0, 3],
Γ3 = [0, 4], Γ4 = [0, 5].
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Γ1 = [0, 2] Γ1 = [0, 2]

Γ2 = [0, 3] Γ2 = [0, 3]

Γ3 = [0, 4] Γ3 = [0, 4]

Γ4 = [0, 5] Γ4 = [0, 5]

Figure 2: EMPIRICAL NULL DISTRIBUTIONS OF THE QLR STATISTIC AND ITS NULL LIMIT DISTRIBUTION
(LSTAR MODEL CASE). Notes: (i) Number of Iterations: 5,000; (ii) DGP: yt = 0.5yt−1 + ut and ut = it`t, where
{it} is an IID sequence in which P{it = 1} = 1 − 0.52 and {`t} ∼ Laplace(0, 2); (iii) Model: yt = πyt−1 +
θyt−1{(1 + exp(−γyt−1))−1} + ut and ut = it`t, where {it} is an IID sequence in which P{it = 1} = 1 − 0.52

and {`t} ∼ Laplace(0, 2); and (iv) Γ1 = [0, 2], Γ2 = [0, 3], Γ3 = [0, 4], Γ4 = [0, 5].
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Γ1 = [0, 2] Γ2 = [0, 3]

Γ3 = [0, 4] Γ4 = [0, 5]

Figure 3: PP PLOTS OF THE QLR STATISTIC USING THE WEIGHTED BOOTSTRAP (ESTAR MODEL CASE).
Notes: (i) Number of Iterations: 2,000, Bootstrap Iterations: 300; (ii) DGP: yt = 0.5yt−1 + ut and ut ∼ IID N(0, 1);
(iii) Model: yt = πyt−1 + θyt−1{1 − exp(−γy2

t−1)}ut and ut ∼ IID N(0, 1); and (iv) Γ1 = [0, 2], Γ2 = [0, 3],
Γ3 = [0, 4], Γ4 = [0, 5].
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Γ1 = [0, 2] Γ2 = [0, 3]

Γ3 = [0, 4] Γ4 = [0, 5]

Figure 4: PP PLOTS OF THE QLR STATISTIC USING THE WEIGHTED BOOTSTRAP (LSTAR MODEL CASE).
Notes: (i) Number of Iterations: 2,000, Bootstrap Iterations: 300; (ii) DGP: yt = 0.5yt−1 + ut and ut = it`t,
where {it} is an IID sequence in which P{it = 1} = 1− 0.25 and {`t} ∼ Laplace(0, 2); (iii) Model: yt = πyt−1 +
θyt−1{(1+exp(−γyt−1))−1−1/2}+ut and ut = it`t, where {it} is an IID sequence in which P{it = 1} = 1−0.52

and {`t} ∼ Laplace(0, 2); and (iv) Γ1 = [0, 2], Γ2 = [0, 3], Γ3 = [0, 4], Γ4 = [0, 5].

The US Unemployment Rate Differenced US Unemployment Rate

Figure 5: THE US UNEMPLOYMENT RATE, 1968.01-2015.08
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Figure 6: DIFFERENCED LOG OF THE QUARTERLY INDUSTRIAL PRODUCTION IN GERMANY, 1961Q1-2014Q4.
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