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Abstract

This study aims to directly test for the sandwich-form asymptotic covariance matrix entailed by conditional het-
eroskedasticity and autocorrelation in the regression error. Given that none of the conditional heteroskedastic or
autocorrelated regression errors yield the sandwich-form asymptotic covariance matrix for the least squares estima-
tor, it is not necessary to estimate the asymptotic covariance matrix using the heteroskedasticity-consistent (HC) or
heteroskedasticity and autocorrelation-consistent (HAC) covariance matrix estimator. Because of this fact, we first
examine testing for the sandwich-form asymptotic covariance matrix before applying the HC or HAC covariance
matrix estimator. For this goal, we apply the testing methodologies proposed by Cho and White (2015) and Cho and
Phillips (2018) to fit the context of this study by extending the scope of their maximum test statistic to have greater
power and further establishing a methodology to sequentially detect the influence of heteroskedastic and autocorre-
lated regression errors on the asymptotic covariance matrix. We affirm the theory on the test statistics of this study
through a simulation and further apply our test statistics to economic and energy price growth rate data for illustrative
purposes.

Key Words: Information matrix equality; sandwich-form covariance matrix; heteroskedasticity-consistent covariance
matrix estimator; heteroskedasticity and autocorrelation-consistent covariance matrix estimator; economic growth
rate; energy price growth rate.

JEL Codes: C12, C22, O47, G17, Q47.

Acknowledgements: The authors benefitted from discussions with the seminar participants at BIT. The responsibility
for any errors and shortcomings in this work remains ours. Cho is grateful for the research grant by the Ministry of
Education in the Republic of Korea and the National Research Foundation of Korea (NRF-2019S1A5A2A01035256).
Huo is grateful for the research grant support by National Natural Science Foundation of China (No.7183009) and
MOE Project of Humanities and Sciences (No. 17YJC790057).



1 Introduction

It is critical to estimate the correct form of the asymptotic covariance matrix for the least squares (LS) estimator.

For example, if the regression error exhibits conditional homoskedastic and martingale difference sequence (MDS)

properties, the information matrix equality holds, so that the standard t-test statistic can be used to infer the unknown

parameters. Unless otherwise imposed, the asymptotic covariance matrix is generally known to have a sandwich

form, letting the standard t-ratio be redefined by the heteroskedasticity-consistent (HC) or heteroskedasticity and

autocorrelation-consistent (HAC) covariance matrix estimator.

Nevertheless, conditionally heteroskedastic and/or autocorrelated errors do not necessarily yield the sandwich-

form asymptotic covariance matrix. Conditionally heteroskedastic and/or autocorrelated error properties are the only

necessary conditions to yield a sandwich-form asymptotic covariance matrix, implying that if the information matrix

equality holds even under conditionally heteroskedastic and/or autocorrelated error properties, we do not have to

estimate the asymptotic covariance matrix using the HC or HAC covariance matrix estimator. Given that the HC

or HAC covariance matrix estimator is not the most efficient estimator under the information matrix equality, the

empirical researcher should use the standard t-test statistic to infer the unknown parameters.

The main goal of this study is therefore to provide a testing methodology for a sandwich-form asymptotic covari-

ance matrix instead of testing heteroskedastic and/or autocorrelated regression errors indirectly. Another goal of this

study is to provide an empirical data analysis using the proposed testing methodology in classical regression and time-

series data analysis settings. This serves the dual purpose of illustrating our method, and, as it turns out, reinforcing

the inferencing process on regression analysis.

To achieve this goal, we apply the methodologies proposed by Cho and White (2015) and Cho and Phillips (2018).

In the earlier literature, they provide simple necessary and sufficient conditions for the equality of two positive-definite

matrices using the trace and determinant of a matrix ratio and further extend them to develop testing methodologies.

In the current study, we apply their methodologies to test for a sandwich-form asymptotic covariance matrix entailed

by conditional heteroskedastic or autocorrelated regression errors. Specifically, we first generalize the maximum test

statistic in Cho and Phillips (2018) in our contexts, so that our test statistics have greater power than the maximum

test statistic in Cho and Phillips (2018), where we separately test for the sandwich-form asymptotic covariance matrix

entailed by conditional heteroskedastic and/or autocorrelated errors. Although our maximum test statistics are not the

most powerful test statistics for any sandwich-form asymptotic covariance matrix, they are omnibus test statistics that

have consistent power against any sandwich form of the asymptotic covariance matrix.

As a further step to achieve these goals, we develop a sequential testing procedure (STP) by implementing our

maximum test statistics in a systematic way. Given that our maximum test statistics are separately constructed to test

for the sandwich-form asymptotic covariance matrices entailed by conditional heteroskedasticity and/or autocorrelated

errors, we further examine a suitable order to apply the test statistics, so that the empirical researcher can control the

overall type-I error of applying these two test statistics. Using this STP, (s)he can then consistently estimate the status

of the asymptotic covariance matrix, so that (s)he can be assured of using a suitable version of the t-ratio to infer the

unknown parameters.
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The testing methodology in this study is highly utilized if the maximum test statistics are combined with the

resampling bootstraps. In particular, the residual bootstrap and wild bootstrap methods of Efron and Tibsharani (1988)

and Wu (1986) are useful for raising the utility of the maximum test statistics. Although the asymptotic null limit

distributions are provided for the maximum test statistics in this study, they may lead to relatively large size distortions

when the sample size is relatively small. This fact is mainly due to the large degrees of freedom of the maximum

test statistics. Many components in the two matrices have to be compared to claim the information matrix equality,

leading to the large degrees of freedom. We overcome this size distortion problem by applying the bootstrap methods

to the maximum test statistics. Indeed, the resampling methods turn out to be efficient remedies for the size distortion

problem, controlling the type-I errors successfully. Simulation results are also provided as evidence to affirm our

theory on the maximum test statistics and STP.

The empirical applicability of the maximum test statistics is potentially huge given that many cross-sectional and

time-series data analyses may have to estimate a sandwich-form asymptotic covariance matrix. For the second goal of

this study to illustrate the use of the testing methodology, we revisit empirical studies of economic growth and finance.

The standard t-test statistic is typically computed by assuming conditional homoskedasticity for cross-sectional data,

and this practice is popularly found in empirical studies. For example, Mankiw, Romer, and Weil (1992) estimate

Solow’s (1957) economic growth model and test the conditional convergence hypothesis using the standard t-ratio

statistic. Using one of our maximum test statistics, we test the sandwich-form asymptotic covariance matrix implied

by the conditionally heteroskedastic regression error and investigate whether their inference results are modified by the

maximum test statistic. As another illustration, we examine a time-series model for the growth rate of energy prices. In

the finance literature, it is standard to estimate conditional mean and variance models simultaneously. It is also usual

to estimate the model using autoregressive (AR) and generalized autoregressive conditional heteroskedastic (GARCH)

models for the conditional mean and variance, respectively. For example, Bai and Lam (2019) estimate the growth rates

of energy prices using AR and GARCH models after supposing a skewed t-distribution for the standardized error, so

that their model can be estimated using maximum likelihood estimation. Furthermore, they deepen their investigation

of the marginal distribution for each energy variable by further estimating the dependence structure between the growth

rates of energy prices through copula estimation. Using our maximum test statistics, we revisit their data analysis and

examine whether their model assumption can be reinforced by the maximum test statistics.

The plan of the remainder of this paper is as follows. Section 2 specifically discusses the motivation of this study

and provides the theories and definitions of our maximum test statistics along with their null, asymptotic, and local

alternative limit behaviors. We also develop the STP to estimate the status of the asymptotic covariance matrix. Section

3 provides the simulation evidence of our theory and Section 4 illustrates the use of our maximum test statistics using

two empirical examples. We provide concluding remarks in Section 5 and collect the mathematical proofs in the

Appendix.
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2 Testing for the Influence of Conditional Heteroskedasticity and Autocor-

relation

In this section, we discuss the motivation of our study and the maximum test statistics used to achieve its goal. We also

provide the null, alternative, and local alternative limit behaviors of the test statistics, so that they can be systematically

structured to estimate the status of the asymptotic covariance matrix using an STP.

2.1 Motivation and Hypotheses

Suppose that the empirical researcher wishes to estimate a parametric model for a conditional equation. That is, for a

stationary process (Yt,Xt) ∈ R1+k, the researcher specifies a parametric model as follows:

M ∶= {m(⋅,θ) ∶ θ ∈ Θ ⊂ Rd}

to estimate the conditional mean of Yt on Xt such that M satisfies the standard regularity conditions for the LS

estimation (e.g., White and Domowitz, 1984). We further suppose that Xt may possess lagged dependent Yt and that

M is correctly specified for E[Yt∣Xt], viz., for some θ∗ ∈ Θ, m(Xt,θ∗) = E[Yt∣Xt] with probability 1.

The conditional mean equation can be consistently estimated using quasi-maximum likelihood (QML) estimation.

If the model for the conditional mean equation is correct and the assumed distribution for the QML estimation belongs

to the linear exponential family, Gourieroux, Monfort, and Trognon (1984) show that the conditional mean equation

can be consistently estimated using the QML estimator that asymptotically follows a normal distribution.

To motivate the main goal of this study, we consider the following model environment. If the modelM is estimated

using QML estimation, we may suppose that the QML estimator denoted by θ̂n converges to θ∗ ∈ Θ by supposing

regularity conditions (e.g., White, 1982). We denote the error by Ut, viz.,

Ut ∶= Yt −m(Xt,θ∗).

As established in the literature, the asymptotic behavior of the QML estimator is critically dependent upon the prop-

erties of Ut and M. For example, if Ut is conditionally heteroskedastic on Xt, the asymptotic variance of θ̂n is

different from that obtained by assuming conditional homoskedasticity (e.g., White, 1980). This fact implies that

the inferencing procedure on θ∗ has to be differently conducted depending on the properties of Ut andM. We can

classify the properties into the following two categories. First, we let Ft be the smallest sigma field generated by

{Xt, Ut−1,Xt−1, Ut−2, . . .} and suppose that {Ut,Ft} forms an MDS. With conditional homoskedasticity, viz., for

some finite σ2
∗ ∈ R+, E[U2

t ∣Ft] = σ
2
∗, it is straightforward to obtain that

√
n(θ̂n − θ∗)

A
∼ N(0,A−1

∗ );
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unless otherwise imposed, it follows that

√
n(θ̂n − θ∗)

A
∼ N(0,A−1

∗ B∗A−1
∗ ), (1)

where A∗ and B∗ are the limit of the Hessian matrix of the quasi-log-likelihood function and asymptotic covariance

matrix of the scores evaluated at θ∗. More specifically, if we let `t(⋅) be the quasi-likelihood function of individual

observations, A∗ ∶= −E[∇2
θ`t(θ∗)] and B∗ ∶= E[sts

′
t], where st denotes the score at θ∗, namely st ∶= ∇θ`t(θ∗). For

example, if the normal distribution is assumed for the quasi-likelihood function and m(Xt,θ∗) = X′
tθ∗,

A∗ = σ−2∗ E[XtX
′
t] and B∗ = σ−4∗ E[U2

t XtX
′
t],

so that the asymptotic covariance matrix of θ̂n is A−1
∗ = σ2

∗E[XtX
′
t]
−1 under the conditional homoskedastic error

assumption. On the contrary, the asymptotic covariance matrix becomes

A−1
∗ B∗A−1

∗ = E[XtX
′
t]
−1E[U2

t XtX
′
t]E[XtX

′
t]
−1

under the conditional heteroskedastic error assumption. From this aspect, it is now clear that if the information matrix

equality does not hold for the asymptotic covariance matrix of the QML estimator, namely A∗ ≠ B∗, it must follow

that Ut exhibits conditional heteroskedasticity under the maintained regularity conditions. Therefore, the inference on

θ∗ has to be conducted using the asymptotic distribution in (1).

In the literature, a number of different test statistics are popularly used to test for conditional heteroskedastic-

ity. Among others, Godfrey (1978b), White (1980), Breusch and Pagan (1979), and Engle’s (1982) conditional het-

eroskedasticity test statistics are popularly used for empirical studies under various data assumptions. These test

statistics are obtained by assuming a particular form of conditional heteroskedasticity; however, they are defined to

have consistent power against a broad class of conditional heteroskedasticity even though they lack omnibus power

against any form of heteroskedasticity. It is also standard to estimate the asymptotic covariance matrix using the HC

covariance matrix estimator if the conditional homoskedasticity hypothesis is rejected by the test statistics.

Second, if {Ut,Ft} does not form an MDS, another form of information matrix inequality holds. If Ut is autocor-

related, the asymptotic covariance matrix B∗ in (1) is modified to

C∗ = B∗ + lim
n→∞

1

n

n

∑
t=1

n

∑
τ=1

t≠τ

E[sts
′
τ ],

so that the limit distribution of the QML estimator is accordingly modified as follows:

√
n(θ̂n − θ∗)

A
∼ N(0,A−1

∗ C∗A−1
∗ ). (2)

The second term on the right-hand side of C∗ vanishes to zero if Ut is an MDS, which does not necessarily hold if Ut
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is autocorrelated. From this aspect, we can conclude that if B∗ ≠ C∗, Ut must be autocorrelated and the inference on

θ∗ has to be conducted using the asymptotic distribution in (2), thus allowing a suitable test statistic to be defined by

estimating C∗ consistently.

In the literature, a number of test statistics are available to test for autocorrelation. For example, Durbin and Wat-

son (1950, 1951), Breusch (1978), Godfrey (1978a), and Ljung and Box (1978) are popularly used for autocorrelation

as well as developed by supposing a particular form of autocorrelation as for the test statistics for conditional het-

eroskedasticity. In addition, there are non-parametric test statistics for autocorrelation. To mention a few, Robinson

(1991), Skaug and Tjøstheim (1996), Hong and White (2005), and Cho and White (2011) provide non-parametric test

statistics for autocorrelation. When the autocorrelation hypothesis is rejected by these test statistics, it is standard to

estimate the asymptotic covariance matrix using the HAC covariance matrix estimator.

As we see from the test statistics in the literature, testing procedures are developed to indirectly test for conditional

heteroskedasticity and/or autocorrelation in Ut. Nevertheless, any form of conditional heteroskedasticity or autocor-

relation does not necessarily lead to the sandwich-form asymptotic covariance matrix. Conditional heteroskedasticity

and autocorrelation are just two of the necessary conditions for the sandwich-form asymptotic covariance matrix.

That is, the presence of conditional heteroskedasticity and/or autocorrelation in Ut does not necessarily lead to the

sandwich-form asymptotic covariance matrix, so that the empirical researcher may not have to estimate the asymptotic

covariance matrix using the HC or HAC covariance matrix estimator if the information matrix equality holds even

with conditionally heteroskedastic and autocorrelated regression errors.

This aspect motivates us to test for the sandwich-form asymptotic covariance matrix hypothesis instead of in-

directly testing for conditional heteroskedastic and/or autocorrelated regression errors. For this goal, we view the

following as the main hypotheses of interest in the current study:

H
(1)
0 ∶ A∗ = B∗ versus H

(1)
1 ∶ A∗ ≠ B∗; and

H
(2)
0 ∶ B∗ = C∗ versus H

(2)
1 ∶ B∗ ≠ C∗.

H
(1)
0 and H(1)1 are provided to test for the sandwich-form asymptotic covariance matrix entailed by conditional het-

eroskedastic errors, whereas H(2)0 and H(2)1 are investigated to test for the sandwich-form covariance matrix entailed

by autocorrelated errors. Each hypothesis characterizes the status of the asymptotic covariance matrix, and a suit-

able test statistic can be applied according to the status. For example, if H(2)0 turns out to be a suitable status for

the asymptotic covariance matrix, we can estimate the asymptotic covariance matrix using the HC covariance matrix

estimator.

2.2 Maximum Test Statistics

The test statistics we examine in this study are developed from the methodologies presented by Cho and White (2014)

and Cho and Phillips (2018). They provide simple necessary and sufficient conditions for the equality of two symmetric
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positive-definite matrices. For example, when we testH(1)0 againstH(1)1 , any two of the following conditions hold:

tr[D∗] = d; det[D∗] = 1; and tr[D−1
∗ ] = d,

if and only if A∗ = B∗, where D∗ ∶= A∗B−1
∗ . It is also possible to reverse the role of A∗ with that of B∗ to define

D∗, so that the same equality holds between A∗ and B∗ if and only if any two of the following conditions hold:

tr[D̃∗] = d; det[D̃−1
∗ ] = 1; and tr[D̃−1

∗ ] = d,

where D̃∗ ∶= B∗A−1
∗ . Using these equivalent conditions, these authors define a number of auxiliary omnibus test

statistics to test the equality of two symmetric positive-definite matrices, recommending the most powerful test statistic

as the maximum of the auxiliary test statistics.

We apply their testing methodology to our testing problem. For this purpose, we define ξ ∶= (θ′, σ2)′ and suppose

that ξ∗ ∶= (θ′∗, σ
2
∗)

′ is consistently estimated using the QML estimator ξ̂n ∶= (θ̂
′
n, σ̂

2
n)

′:

ξ̂n ∶= arg max
ξ∈Ξ

L̄n(ξ), where L̄n(⋅) ∶=
1

n

n

∑
t=1
`t(⋅),

and `t(⋅) is the individual quasi-log-likelihood function defined on Ξ ∶= Θ × [c, d] (c and d ∈ R+ ). Here, n denotes

the sample size. A particular form of quasi-log-likelihood function is assumed, so that it can consistently estimate θ∗

and the unconditional variance of Ut denoted by σ2
∗. For example, the normal likelihood function belongs to this case.

We further suppose that A∗ and the associated covariance matrices can be consistently estimated using Ân, B̂n, and

Ĉn, respectively, viz.,

Ân
P
→A∗, B̂n

P
→ B∗, and Ĉn

P
→C∗.

For example, we can let

Ân ∶= −
1

n

n

∑
t=1

∇
2
θ`t(ξ̂n), B̂n ∶=

1

n

T

∑
t=1
ŝtŝ

′
t, and Ĉn ∶=

1

n

T

∑
t=1
ŝtŝ

′
t +

1

n

`

∑
k=1

ω`k
n

∑
t=k+1

(ŝt−kŝ′t + ŝtŝ
′
t−k) ,

where ŝt ∶= ∇θ`t(ξ̂n) and ω`k and ` are the kernel and bandwidth used to estimate C∗ consistently; moreover, B̂n is

White’s (1980) HC covariance matrix estimator, and a number of different kernels and bandwidths can be employed

for Ĉn. For example, we can let ω`k ∶= 1 − k/(1 + `) and ` = O(n1/3) to employ Newey and West’s (1987) HAC

covariance matrix estimator. As another example, Andrews (1991) recommends using the quadratic spectral kernel:

ω`k ∶=
25

12π2x2
{

sin(6πx/5)

6πx/5
− cos(6πx/5)} (3)

with x ∶= k/(1 + `) and ` = O(n1/5). Indeed, there are many other kernels and bandwidths for the HAC estimation of

C∗ (e.g., Gallant, 1987; Ng and Perron, 1996).

Using these estimators, we define the auxiliary test statistics as in Cho and White (2014) and Cho and Phillips
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(2018). For example, ifH(1)0 is tested againstH(1)1 , we let D̂n ∶= ÂnB̂−1
n and define the following statistics:

τ̂n ∶=
1

d
tr[D̂n] − 1, η̂n ∶=

d

tr[D̂−1
n ]

− 1, δ̂n ∶= det[D̂n]
1
d − 1, γ̂n ∶= δ̂n − η̂n, and ζ̂n ∶= τ̂n − δ̂n.

These statistics are introduced to consistently estimate

τ̇∗ ∶=
1

d
tr[D∗] − 1, η̇∗ ∶=

d

tr[D−1∗ ]
− 1, δ̇∗ ∶= det[D∗]

1
d − 1, γ̇∗ ∶= δ̇∗ − η̇∗, and ζ̇∗ ∶= τ̇∗ − δ̇∗,

respectively.

The motivations of these statistics stem from the fact that d−1tr[D̂], det[D̂]
1
d , and dtr[D̂−1

n ]−1 estimate the

arithmetic, geometric, and harmonic means of the eigenvalues of D∗. If any two of these are equal to unity, D∗

must be Id, and its converse is also true because any two of the means are equal to each other if and only if all the

eigenvalues are identical. Therefore, if any two of the above five auxiliary statistics estimate zero consistently, this

implies that D∗ = Id.

In addition to these auxiliary test statistics, we let D̃n ∶= B̂nÂ−1
n to testH(1)0 againstH(1)1 and define the following

test statistics:

τ̃n ∶=
1

d
tr[D̃n] − 1, η̃n ∶=

d

tr[D̃−1
n ]

− 1, δ̃n ∶= det[D̃n]
1
d − 1, γ̃n ∶= δ̃n − η̃n, and ζ̃n ∶= τ̃n − δ̃n,

where the roles of A∗ and B∗ are reversed from those used to define D∗. As before, these additional statistics are

introduced to estimate

τ̈∗ ∶=
1

d
tr[D−1

∗ ] − 1, η̈∗ ∶=
d

tr[D∗]
− 1, δ̈∗ ∶= det[D−1

∗ ]
1
d − 1, γ̈∗ ∶= δ̈∗ − η̈∗, and ζ̈∗ ∶= τ̈∗ − δ̈∗,

consistently, respectively.

In a different environment, D̂n and D̃n can be redefined to test the hypotheses. If the researcher wishes to test

H
(2)
0 against H(2)1 , we can let D̂n ∶= B̂nĈ−1

n and D̃n ∶= ĈnB̂−1
n and obtain the statistics accordingly using the new

D̂n and D̃n.

The maximum test statistic in this study is defined using the auxiliary statistics. Specifically, we let our test statistic

be defined as follows:

M̂n ∶= max
j=1,2

[B̂j,n, Ŝj,n, Êj,n, B̃j,n, S̃j,n, Ẽj,n] ,

where

B̂1,n ∶=
nd

2
(τ̂2n + 2ζ̂n), B̂2,n ∶=

nd

2
(δ̂2n + 2ζ̂n), Ŝ1,n ∶=

nd

2
(δ̂2n + 2γ̂n), Ŝ2,n ∶=

nd

2
(η̂2n + 2γ̂n),

Ê1,n ∶=
nd

2
(τ̂2n + 2γ̂n), and Ê2,n ∶=

nd

2
(η̂2n + 2ζ̂n).

For j = 1 and 2, we also let B̃j,n, S̃j,n, and Ẽj,n be similarly defined using τ̃n, η̃n, δ̃n, γ̃n, and ζ̃n.
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The auxiliary test statistics constituting M̂n are defined by applying Wald’s (1943) test principle, and M̂n is

designed to have the maximum power out of the 12 auxiliary test statistics. For example, τ̂n estimates the distance

between the arithmetic average of the eigenvalues of D̂n and unity, and ζ̂n estimates the distance between τ̂n and δ̂n

that estimates the distance between the geometric average of the eigenvalues of D̂n and unity, so that B̂1,n now tests

whether the arithmetic average of the eigenvalues of D∗ is unity and also equal to the geometric average of the same

eigenvalues. Likewise, for j = 1 and 2, the auxiliary test statistics B̂j,n, Ŝj,n, Êj,n, B̃j,n, S̃j,n, and Ẽj,n test whether

any two of the arithmetic, geometric, and harmonic averages of D∗ and D−1
∗ are equal to unity using Wald’s (1943)

test principle. Furthermore, Cho and Phillips (2018) show that the null limit behaviors of the auxiliary statistics are

equivalent, so that the null limit behavior of M̂n turns out to be identical to that of each auxiliary test statistic.

The maximum test statistic M̂n is different from that in Cho and Phillips (2018). Although our test statistic is

constructed by following their approach, their maximum test statistic is defined as the maximum of only B̂j,n, Ŝj,n,

and Êj,n with j = 1 and 2. They do not explicitly examine the role of D̃n when defining their maximum test statistic.

Accommodating the roles of both D̂n and D̃n, we define M̂n and expect more powerful behavior from M̂n than that

in Cho and Phillips (2018) in addition to being an omnibus test statistic.

When defining the maximum test statistic M̂n, not every auxiliary test statistic is used to define the maximum test

statistic. For example, the researcher may define another auxiliary test statistic by applying Wald’s test principle to τ̂n

and the distance between τ̂n and η̂n, so that it can contribute to M̂n. Nevertheless, Cho and Phillips (2018, remarks

below theorem 3) show that the other auxiliary test statistics not considered here have asymptotic power inferior to

the auxiliary test statistics contributing to M̂n. We therefore focus only on B̂j,n, Ŝj,n, Êj,n, B̃j,n, S̃j,n, and Ẽj,n to

define the maximum test statistics.

Hereafter, we denote the maximum test statistics and their auxiliary test statistics using a superscript to represent

the hypothesis tested by the maximum test statistics and avoid any confusion. That is, M̂(1)
n and M̂

(2)
n denote the

maximum test statistics designed to testH(1)0 againstH(1)1 andH(2)0 againstH(2)1 , respectively.

Before examining the limit behaviors of the maximum test statistics, we formally state the regularity conditions for

the maximum test statistics by applying those in Cho and Phillips (2018). For an efficient provision of the regularity

conditions, for each i = 1 and 2, we let P(i)(⋅), P̄(i)(⋅), and P
(i)
n (⋅) denote the functions corresponding to the left-

hand side matrix inH(i)0 . For example, we let P(1)(ξ∗) = A∗ underH(1)0 , which is the left-hand side matrix inH(1)0 .

Likewise, we let Q(i)(⋅), Q̄(i)(⋅), and Q
(i)
n (⋅) denote the functions corresponding to the right-hand side matrix in

H
(i)
0 . For each i = 1 and 2, we further let P̂

(i)
n ∶= Pn(ξ̂n) and Q̂

(i)
n ∶= Qn(ξ̂n), so that, for example, P̂

(1)
n = Ân and

Q̂
(1)
n = B̂n underH(1)0 .

Assumption 1. (i) {Zt ∶= (Yt,X
′
t)
′ ∈ R(1+k) ∶ t = 1,2, . . .} is a strictly stationary process defined on a complete

probability space (Ω,F ,P) with k ∈ N;

(ii) Ξ ∶= Θ × [b, c] is a compact and convex set with a non-empty interior, and Θ ⊂ Rd with d ∈ N;

(iii) The sequence of {ξ̂n ∶= (θ̂
′
n, σ̂

2
n)

′ ∶ Ω ↦ Ξ} converges to ξ∗ ∶= (θ′∗, σ
2
∗)

′ ∈ Ξ in probability, where ξ∗ is

unique and interior to Ξ,

ξ̂n ∶= arg max
ξ∈Ξ

L̄n(ξ) with L̄n(ξ) ∶=
1

n

n

∑
t=1
`t(ξ),
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and `t(⋅) ∶= `(Zt, ⋅) is the quasi-log-likelihood function assuming a correctly specified model M ∶= {m(⋅,θ) ∶ θ ∈

Θ ⊂ Rd} for E[Yt∣Xt] and a constant conditional variance such that `t(⋅) is continuous on Ξ almost surely −P;

(iv) For each i = 1 and 2, there are P
(i)
n (⋅) ∶ Ξ↦ Rd×d and Q

(i)
n (⋅) ∶ Ξ↦ Rd×d consistent for P(i)(⋅) and Q(i)(⋅)

uniformly on Ξ;

(v) For each i = 1 and 2 and for some positive-definite Σ(i)∗ ,
√
n[(ξ̂n − ξ∗), (P̂

(i)
n − P

(i)
∗ ), (Q̂

(i)
n − Q

(i)
∗ )] ⇒

(Zξ, P̄
(i)
∗ +ZQ(i) , Q̄

(i)
∗ +ZQ(i)) such that [Z′

ξ,vech(ZP(i))
′,vech(ZQ(i))

′]′ ∼ N(0,Σ(i)∗ ), where

(v.i) P̂
(i)
n ∶= P

(i)
n (ξ̂n) and Q̂

(i)
n ∶= Q

(i)
n (ξ̂n);

(v.ii) P
(i)
∗ ∶= P(i)(ξ∗) and Q

(i)
∗ ∶= Q(i)(ξ∗) are symmetric and positive definite such that P(i) ∶ Ξ ↦ Rd×d

and Q(i) ∶ Ξ↦ Rd×d are in C(2)(Ξ); and

(v.iii) P̄
(i)
∗ ∶= P̄(i)(ξ∗) and Q̄

(i)
∗ ∶= Q̄(i)(ξ∗) are symmetric and positive semi-definite such that P̄

(i)
∗ ≠ Q̄

(i)
∗ ,

and P̄(i) ∶ Ξ↦ Rd×d and Q̄(i) ∶ Ξ↦ Rd×d are in C(1)(Ξ);

(vi) For each i = 1,2 and j = 1,2, . . . , d, (∂/∂θj)P
(i)
n (⋅) and (∂/∂θj)Q

(i)
n (⋅) are consistent for (∂/∂θj)P

(i)(⋅)

and (∂/∂θj)Q
(i)(⋅) uniformly on Ξ in probability; and

(vii) For each i = 1,2 and j = 1,2, . . . , d, (P(i)∗ )−1(∂/∂θj)(P
(i)
n (ξ∗) −P

(i)
∗n) and (Q

(i)
∗ )−1(∂/∂θj) (Q

(i)
n (ξ∗) −

Q
(i)
∗n) are OP(n

−1/2). ◻

Here, Assumption 1(v) is imposed to apply a multivariate central limit theorem to ξ̂n, P̂
(i)
n , and Q̂

(i)
n , where the

last two statistics are involved in the local-to-zero parameters P̄
(i)
∗ and Q̄

(i)
∗ , respectively. As we show in the next

subsection, these local-to-zero parameters are used to examine the limit behaviors of the maximum test statistics under

the local alternative. If both P̄
(i)
∗ and Q̄

(i)
∗ are zero, Assumption 1(vii) can be used to derive the limit behaviors of the

maximum test statistics under the null and alternative hypotheses.

2.3 Limit Behaviors of the Test Statistics

In this section, we examine the limit distributions of the maximum test statistics discussed in the previous sections

under the null hypotheses (H
(1)
0 and H(2)0 ), alternative hypotheses (H

(1)
1 and H(2)1 ), and following local alternative

hypotheses:

• H(1)` ∶ A∗ = B∗ such that A∗n = A∗ + n−1/2Ā∗ + o(n−1/2) and B∗n = B∗ + n−1/2B̄∗ + o(n−1/2); and

• H(2)` ∶ B∗ = C∗ such that B∗n = B∗ + n−1/2B̄∗ + o(n−1/2) and C∗n = C∗ + n−1/2C̄∗ + o(n−1/2),

where Ā∗, B̄∗, and C̄∗ are positive semi-definite matrices. H(1)` and H(2)` capture the local alternative hypotheses

to their corresponding null hypotheses. For example, A∗n differs from B∗n under H(1)` , but their limits are identical

at the convergence rate n−1/2. If Ā∗ = B̄∗ = C̄∗ = 0, H(1)` and H(2)` reduce to the null hypotheses H(1)0 and H(2)0 ,

respectively.

We first obtain the local alternative limit distributions of the maximum test statistics. If we let the local-to-zero

parameters be zero, the local alternative limit distributions of the maximum test statistics become the null limit distri-

butions of the same test statistic. We therefore first obtain the local limit distributions of the maximum test statistics

and next obtain the null limit distributions from these as by-products.
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We now formally provide the local alternative limit distributions of the maximum test statistics in the following

theorem:

Theorem 1. For i = 1 and 2, if Assumption 1 holds,

M̂(i)
n ⇒ (Z(i) + V̈

(i)
∗ )

′Ω(i)∗ (Z(i) + V̈
(i)
∗ )

underH(i)` , where

Z(i) ∶=
⎡
⎢
⎢
⎢
⎢
⎢
⎣

vec(ZQ(i) −ZP(i))

vec(Z′
θ ⊗ Id)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, Ω(i)∗ ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(P
(i)
∗ )−1 ⊗ (P

(i)
∗ )−1 (P

(i)
∗ )−1R(i)′∗ ⊗ (P

(i)
∗ )−1

(P
(i)
∗ )−1 ⊗R

(i)
∗ (P

(i)
∗ )−1 (P

(i)
∗ )−1R(i)′∗ ⊗R

(i)
∗ (P

(i)
∗ )−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

with R
(i)
∗ ∶= [∇θ(Q

(i)
∗ − P

(i)
∗ )′]′, V̈

(i)
∗ ∶= Ω(i)−1/2∗ V

(i)
∗ with V

(i)
∗ ∶= (Q

(i)
∗ )−1Q̄(i)∗ − (P

(i)
∗ )−1P̄(i)∗ , and Zξ ∶=

[Z′
θ, Zσ2]′. ◻

The local alternative limit distribution in Theorem 1 is obtained by deriving the local alternative weak limit of each

maximand as in Cho and Phillips (2018). More specifically, we show that for each j = 1 and 2, all B̂j,n, Ŝj,n, Êj,n,

B̃j,n, S̃j,n, and Ẽj,n weakly converge to the same weak limit given as (Z(i) +V
(i)
∗ )′Ω(i)∗ (Z(i) +V

(i)
∗ ) for i = 1 and

2, so that their maximum also weakly converges to (Z(i) +V
(i)
∗ )′Ω(i)∗ (Z(i) +V

(i)
∗ ) under the local alternativeH(i)` .

We next derive the null limit distributions of the maximum test statistics by letting the local-to-zero parameters

be zero, as mentioned above. The following corollary formally states the null limit distributions of the maximum test

statistics.

Corollary 1. For i = 1 and 2, if Assumption 1 holds, M̂(i)
n ⇒ Z(i)′Ω(i)∗ Z

(i) underH(i)0 . ◻

If the null hypothesis is imposed, so that for i = 1 and 2, V
(i)
∗ = 0, Corollary 1 follows. This fact implies that the

null limit distributions of the maximum test statistics are obtained as non-central chi-squared distributions with a zero

non-centrality parameter.

If the sample size n is relatively small, the null distributions of the maximum test statistics can be better ap-

proximated by applying the residual and wild bootstraps to M̂
(1)
n and M̂

(2)
n , respectively than applying the null limit

distributions in Corollary 1. The finite sample size distortion can be substantially large if the asymptotic critical values

apply when the sample size n is relatively small, because the degrees of freedom in the null limit distribution can

be large. Z(i) is obtained by vectorizing ZQ(i) − ZP(i) and Z′
θ ⊗ Id, so that relatively large degrees of freedom are

obtained from the vectorization, leading to finite sample null distributions that can differ substantially from the null

limit distributions. Instead, the finite sample null distributions of the maximum test statistics can be easily generated

using resampling methods. In Section 3, we present the results of Monte Carlo simulations conducted to examine the

performance of the maximum test statistics implemented using resampling methods.

We next provide the power properties of the maximum test statistics in the following theorem.
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Theorem 2. For i = 1 and 2, if Assumption 1 holds, M̂(i)
n = n{µ

(i)
∗ +OP(1)} under the fixed alternative hypothesis

H
(i)
1 , where

µ
(i)
∗ ∶= (

d

2
)max [Ḃ

(i)
1,∗, Ė

(i)
1,∗, Ė

(i)
2,∗, B̈

(i)
1,∗, Ë

(i)
1,∗, Ë

(i)
2,∗] ,

Ḃ
(i)
1,∗ ∶= (τ̇

(i)
∗ )2 + 2ζ̇∗, Ė(i)1,∗ ∶= (τ̇

(i)
∗ )2 + 2γ̇∗, Ė(i)2,∗ ∶= (η̇

(i)
∗ )2 + 2ζ̇∗, B̈(i)1,∗ ∶= (τ̈

(i)
∗ )2 + 2ζ̈

(j)
∗ , Ë(i)1,∗ ∶= (τ̈

(i)
∗ )2 + 2γ̈∗, and

Ë
(i)
2,∗ ∶= (η̈

(i)
∗ )2 + 2ζ̈∗. ◻

That is, the limit distribution of the maximum test statistics diverges to positive infinity at the rate of n. Here, the first

term µ
(i)
∗ denotes the location parameter leading to the divergence of the maximum test statistics. On the contrary, the

remaining term OP(n) determines the dispersion scale of the maximum test statistics under the alternative.

The asymptotic power of the maximum test statistics is expected to be greater than that in Cho and Phillips (2018).

For each i = 1 and 2, applying their maximum test statistic yields the leading term µ̇
(i)
∗ ∶= maxj=1,2[Ḃ

(i)
j,∗, Ṡ

(i)
j,∗, Ė

(i)
j,∗],

where Ṡ
(i)
1∗ ∶= (δ̇

(i)
∗ )2 + 2γ̇

(i)
∗ and Ṡ

(i)
2∗ ∶= (η̇

(i)
∗ )2 + 2ζ̇

(i)
∗ . Here, δ̇(i)∗ ∈ [η̇

(i)
∗ , τ̇

(i)
∗ ], so that Ṡ(i)1,∗ ≤ Ė

(i)
1,∗. Furthermore,

Ṡ
(i)
2,∗ ≤ max[Ë

(i)
1,∗, B̈

(i)
1,∗] by the definitions of Ë(i)1,∗ and B̈

(i)
1,∗, implying that µ̇(i)∗ ≤ µ

(i)
∗ . From this feature, for each

i = 1 and 2, the leading term of M̂(i)
n becomes greater than that in Cho and Phillips (2018). From this fact, greater

power is expected from the maximum test statistics.

2.4 Plan to Test for the Influence of Conditional Heteroskedasticity and Autocorrelation

When testing for the sandwich-form asymptotic covariance matrix entailed by both conditional heteroskedastic and

autocorrelated errors, we recommend testing autocorrelation first and then conditional heteroskedasticity. One of the

assumptions retained to test H(1)0 against H(1)1 is that {Ut,Ft} is an MDS. If {Ut,Ft} is not an MDS, it is difficult

to trust the test result. We therefore recommend testing for the sandwich-form asymptotic covariance matrix entailed

by autocorrelated errors first and then testing for the asymptotic covariance matrix form influenced by heteroskedastic

regression errors. Specifically, we provide the following STP:

● Step 1: TestH(2)0 againstH(2)1 using M̂
(2)
n . IfH(2)0 is rejected, stop the STP. Otherwise, move to the next step.

● Step 2: TestH(1)0 againstH(1)1 using M̂
(1)
n . IfH(1)0 is rejected, conclude that Ut is conditionally heteroskedastic.

Otherwise, conclude that A∗ = B∗.

Using the provided STP, the given hypotheses (i.e., the statuses of the asymptotic covariance matrix) are selected

with different asymptotic probabilities. Under H(2)1 , the empirical researcher can detect the correct hypothesis with

an asymptotic probability converging to 100% using the STP from the fact that M̂(2)
n is a consistent test statistic. On

the contrary, under H(1)1 that also belongs to H(2)0 , the empirical researcher can detect the correct hypothesis with an

asymptotic probability converging to (1−α)×100% using the STP, where α denotes the level of significance selected

by the researcher. In the first step, the empirical researcher can commit to an α×100% type-I error while testing for the

sandwich-form asymptotic covariance matrix entailed by autocorrelated errors. On the contrary, the sandwich-form

asymptotic covariance matrix entailed by conditional heteroskedastic errors can be consistently detected by M̂
(1)
n with

an asymptotic probability converging to 100%. In total, the researcher therefore commits to an asymptotic probability
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converging to (1 − α) × 100%. Finally, under H(1)0 , the empirical researcher can detect the correct hypothesis with

an asymptotic probability converging to (1 − 2α) × 100%. H(1)0 can be selected only when neither H(2)0 nor H(1)0 is

rejected by the STP. As the testing procedure is conducted at α×100% in each step, the overall asymptotic type-I error

becomes 2α × 100%. In the next section, we show the Monte Carlo simulations and affirm this feature.

3 Simulations

In this section, we present the results of the Monte Carlo simulations conducted to affirm the theory in Section 2.

Given that the test statistics can be sequentially applied, we first discuss testing H(1)0 against H(1)1 and H(2)0 against

H
(2)
1 and then discuss the STP.

For the goal of this section, we consider the following simulation setup. We first suppose that time-series observa-

tions are generated according to the following formula:

Yt = β0∗ + β1∗Yt−1 + β2∗Yt−2 +Ut and Ut =
√
htεt,

such that

ht = κ∗ + φ∗ht−1 + γ∗U2
t−1 and εt ∼ IID N(0,1).

Different time-series observations can be generated by letting the parameters in the data-generating process (DGP) be

specified differently. We consider the following three parameter specifications:

● DGP1: (β0∗, β1∗, β2∗, κ∗, φ∗, γ∗) = (0.0,0.5,0.0,1.0,0.0,0.0);

● DGP2: (β0∗, β1∗, β2∗, κ∗, φ∗, γ∗) = (0.0,0.5,0.0,1.0,0.2,0.2); and

● DGP3: (β0∗, β1∗, β2∗, κ∗, φ∗, γ∗) = (0.0,0.5,−0.2,1.0,0.2,0.2).

DGP1 generates serially uncorrelated errors with conditionally homoskedastic variance from the fact that ht = 1, so

that we can use DGP1 to examine the size property of M̂(1)
n under H(1)0 . That is, if we let σ2

∗ ∶= E[U2
t ], σ

2
∗E[XtX

′
t]

becomes identical to the probability limit of the HC covariance matrix estimator for E[U2
t XtX

′
t]. On the contrary,

DGP2 generates conditionally heteroskedastic errors, although the errors form an MDS. Therefore, we can use DGP2

to examine the performance of M̂(2)
n under H(2)0 . In addition to this feature, the probability limit of the HC covari-

ance matrix estimator becomes identical to the probability limit of the HAC covariance matrix estimator, whereas

σ2
∗E[XtX

′
t] becomes different from the probability limit of the HC covariance matrix estimator. Therefore, DGP2

can be used to investigate the performance of M̂(1)
n under H(1)1 . Finally, DGP3 generates autocorrelated and con-

ditionally heteroskedastic errors from the fact that M is dynamically misspecified for E[Yt∣Yt−1, Yt−2, . . .], so that

the probability limits of the HC and HAC covariance matrix estimators differ. From this fact, DGP3 can be used to

examine the performance of M̂(2)
n underH(2)1 .
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Given these DGP conditions, we further suppose that the researcher specifies the following model:

M ∶= {θ0 + θ1Yt−1 ∶ (θ0, θ1)′ ∈ R2
}

and estimates the unknown coefficients in M using the LS estimator. This estimation procedure is equivalent to

estimating the linear model by supposing that the error is normally distributed. For notational simplicity, we let

Xt ∶= (1, Yt−1)′.

It is useful to apply resampling methods to test for the sandwich-form asymptotic covariance matrices, as discussed

above. For our simulations, we apply the residual bootstrap in Efron and Tibsharani (1988) and the wild bootstrap in

Wu (1986). Specifically, residual bootstrap resampling is useful for testing H(1)0 against H(1)1 by M̂
(1)
n , whereas wild

bootstrap resampling is useful for testing H(2)0 against H(2)1 by M̂
(2)
n . The residual bootstrap resampling method can

thus be applied in the following plan:

● Step 1: Estimate θ̂n using the LS method and obtain {Ût ∶= Yt −X′
tθ̂n ∶ t = 1,2, . . . , n} to estimate σ̂2

nÂn and

B̂n. From these matrix estimators, compute M̂
(1)
n , where

σ̂2
n ∶=

1

n

n

∑
t=1
Û2
t , Ân ∶=

1

n

n

∑
t=1

XtX
′
t, and B̂n ∶=

1

n

n

∑
t=1
Û2
t XtX

′
t; (4)

● Step 2: Resample {Û bt ∶ t = 1,2, . . . , n} and obtain σ̂2b
n Ân and B̂b

n to compute M̂
(1)b
n by σ̂2b

n ∶= n−1∑nt=1(Û
b
t )

2

and B̂b
n ∶= n

−1
∑
n
t=1 Û

b2
t XtX

′
t;

● Step 3: Iterate Step 2 for b = 1,2, . . . ,B and estimate the bootstrapped p-value by p̂(1)n ∶= B−1
∑
B
b=1 1{M̂

(1)
n <

M̂
(1)b
n };

● Step 4: If p̂(1)n < α, rejectH(1)0 ; otherwise, do not rejectH(1)0 .

On the contrary, the wild bootstrap resampling method can be implemented in the following plan to test H(2)0 against

H
(2)
1 :

● Step 1: Estimate θ̂n using the LS estimation and obtain {Ût ∶= Yt −X′
tθ̂n ∶ t = 1,2, . . . , n} to estimate B̂n and

Ĉn. From these matrix estimators, compute M̂
(2)
n , where B̂n is the same estimator as B̂n in the residual bootstrap,

and

Ĉn ∶= B̂n +
1

n

`

∑
k=1

ω`k
n

∑
t=k+1

(Ût−kÛtXt−kX′
t + ÛtÛt−kXtX

′
t−k). (5)

Here, ω`k and ` are the HAC kernel and bandwidth, respectively used to estimate C∗ consistently;

● Step 2: Resample Vt ∼ IID (0,1) and define {W b
t ∶= VtÛt ∶ t = 1,2, . . . , n} to compute B̈n and C̈n and obtain

M̂
(2)b
n , where

B̈n ∶=
1

n

n

∑
t=1

(W b
t )

2XtX
′
t and C̈n ∶= B̈n +

1

n

`

∑
k=1

ω`k
n

∑
t=k+1

(Wt−kWtXt−kX′
t +WtWt−kXtX

′
t−k);
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● Step 3: Iterate Step 2 for b = 1,2, . . . ,B and estimate bootstrapped p-value by p̂(2)n ∶= B−1
∑
B
b=1 1{M̂

(2)
n <

M̂
(2)b
n };

● Step 4: If p̂(2)n < α, rejectH(2)0 ; otherwise, do not rejectH(2)0 .

Wild bootstrap resampling has many variations, as Vt can be drawn differently from the standard normal and many

alternative estimators exist for C∗. For example, the Rademacher distribution is also popularly used for Vt in the

literature. For our simulations, we let Vt ∼ IID N(0,1) and ω`k be the quadratic kernel in (3). We further let

` = ⌊n1/5⌋ − 1.

We conduct Monte Carlo simulations using DGP1, -2, and -3 according to the above two resampling methods.

Table 1 reports the simulation results. We summarize the simulation results as follows:

(a) The first panel of Table 1 reports the empirical rejection rates of M̂(1)
n under H(1)0 . We applied the residual

bootstrap to evaluate M̂
(1)
n , which is computed using data observations following DGP1. As the sample size n

increases, the empirical rejection rates approach nominal levels, implying that the resampling method enables

us to control the type-I error successfully.

(b) The first two panels of Table 1 report the empirical rejection rates of M̂(2)
n under H(2)0 . Both DGP1 and DGP2

can be used to generate observations belonging to H(2)0 . Hence, we applied the wild bootstrap method to

M̂
(2)
n . As the sample size n increases, the empirical rejection rates approach nominal levels, implying that the

resampling method also enables us to control the type-I error successfully under H(2)0 . In particular, when the

error term exhibits conditional homoskedasticity (i.e., under DGP1), the empirical rejection rates of M̂(2)
n are

closer to nominal levels than those under DGP2. Furthermore, the empirical rejection rates are closer to nominal

levels when the level of significance α is small. Although we do not report these here, our simulations show

that a rather larger sample size n is required for the successful application of the wild bootstrap method when

the level of significance α is relatively large.

(c) The second and third panels of Table 1 report the empirical rejection rates of M̂(1)
n under H(1)1 . Both DGP2

and DGP3 can be used to generate observations belonging to H(1)1 . The two panels of Table 1 show that the

empirical rejection rates converge to unity as the sample size n increases. The empirical rejection rates are more

or less similar between the two panels.

(d) The third panel of Table 1 reports the empirical rejection rates of M̂
(2)
n under H(2)1 . As the sample size n

increases, the empirical rejection rates converge to unity, whereas the rejection rates are lower than those of

M̂
(1)
n underH(1)1 .

These simulation results show that the theories on M̂
(1)
n and M̂

(2)
n are affirmed when testing H(1)0 and H(2)0 against

H
(1)
1 and H(2)1 , respectively, implying that we can consistently distinguish the statuses of the asymptotic covariance

matrices generated by homoskedastic, heteroskedastic, and autocorrelated errors.

We next examine the performance of the STP using Monte Carlo simulations. Using DGP1, -2, and -3, we examine

the asymptotic portion of the hypotheses selected by the STP. As discussed in Section 2.4, if the STP is successfully

implemented, H(1)0 should be selected with an asymptotic probability converging to (1 − 2α) × 100% under DGP1.

14



On the contrary, H(2)0 should be selected with an asymptotic probability converging to (1 − α) × 100% under DGP2.

Finally, H(2)1 should be selected with an asymptotic probability converging to 100% under DGP3. We let the level of

significance α be 0.05 to conduct the simulations. Table 2 reports the simulation results, which can be summarized as

follows:

(a) Under DGP1, H(1)0 is estimated with a proportion close to 90% as the sample size n increases. This aspect

affirms that the STP estimates H(1)0 with an asymptotic probability converging to (1 − 2α) × 100%. On the

contrary, both H(2)0 and H(2)1 are selected with asymptotic probabilities converging to α × 100%. This feature

is caused by the α × 100% type-I error, so that if a small α is selected, the researcher can estimate H(1)0 with a

high precision rate.

(b) Under DGP2, H(2)0 is estimated with a proportion close to 95% as the sample size n increases. This aspect

affirms that the STP estimates H(2)0 with an asymptotic probability converging to (1 − α) × 100%. On the

contrary, H(1)0 and H(2)1 are selected with probabilities converging to 0% and α × 100%, respectively. The

portion of H(2)1 is determined by the type-I error. As for DGP1, if the researcher selects α to be close to zero,

(s)he can estimateH(2)0 with a high precision rate.

(c) Under DGP3, H(2)1 is estimated with a proportion close to 100% as the sample size n increases. Under the first

step of the STP, the researcher can reject H(2)0 with an asymptotic probability converging to unity, so that H(2)1

can be consistently selected. When n = 2,000, H(2)1 is selected with 86.10%, whereas if the sample size n

further increases,H(2)1 must be selected with a probability converging to 100%.

Our Monte Carlo simulations affirm the theories in Section 2.3, validating the use of the matrix equality testing.

4 Empirical Applications

In this section, we apply the matrix equality testing to empirical data. We examine two empirical models. First, we

revisit the conditionally converging economic growth model using the empirical data provided by Mankiw, Romer,

and Weil (1992) and then examine how a typical time-series data analysis can be combined with the matrix equality

testing. For this purpose, we use the energy data provided by Bai and Lam (2019).

4.1 Conditionally Converging Economic Growth Model Estimation

In the economic growth literature, there are many theories on economic growth and many empirical studies have been

conducted to compare economic growth rates between countries. In particular, the conditional convergence hypothesis

is popularly examined in empirical studies, which states that different savings propensities between countries result

in the same economic growth rate if the same technological possibilities and population growth rate are possessed by

different countries. For example, Mankiw, Romer, and Weil (1992) empirically examine Solow’s (1957) growth model

and find evidence for conditional convergence using cross-sectional data consisting of three country groups: non-oil,

intermediate, and OECD countries. Their economic growth rates are collected using GDP observations between 1960

and 1985.
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In this section, we revisit the empirical inference in Mankiw, Romer, and Weil (1992) that test the conditional con-

vergence hypothesis by assuming a conditional homoskedastic regression error. Specifically, we test for the sandwich-

form asymptotic covariance matrix entailed by heteroskedastic regression errors using the maximum test statistic M̂(1)
n

and examine how this additional testing result modifies the inference results in Mankiw, Romer, and Weil (1992). We

further compare our inference results with Breusch and Pagan’s (1979) and White’s (1980) test statistics for het-

eroskedasticity.

Mankiw, Romer, and Weil (1992) estimate the following model to infer the conditional convergence hypothesis of

economic growth:

log(Y85,t) = β0∗ + β1∗ log(Y60,t) + β2∗ log(st) + β3∗ log(nt + gt + δt) +Ut,

where Y85,t and Y60,t represent the GDP per working-age person of the t-th country in 1985 and 1960, respectively

and st, nt, gt, and δt denote the average share of real investment in real GDP, average growth rate of the working-age

population, technology growth, and depreciation rate, respectively.1 In the above model, log(st) and log(nt + gt + δt)

are controlled as the determinants of steady states. According to the Solow model, poor countries with a lower initial

income level tend to grow faster than richer ones, which means that β1∗ is negative. Conditional convergence exists

if the estimate of β1∗ is significantly negative. Following their inferencing plan, we reproduce their model estimation

results and further apply the maximum test statistic to the estimated asymptotic covariance matrix of the estimated

parameters.

Using the data sets provided by Mankiw, Romer, and Weil (1992), we obtain the model estimation results using the

LS estimation and present them in Table 3. In the same table, we also report the p-values of the maximum test statistic

and other conditional heteroskedasticity test statistics. Specifically, the top panel of Table 3 reports the LS estimates

for the coefficients, standard errors, and White’s HC standard errors for the three data sets of non-oil, intermediate,

and OECD countries. The two standard errors are separately provided to compute the t-ratio using a suitable standard

error. If the maximum test statistic M̂
(1)
n rejects the null hypothesis H(1)0 , the t-ratio should be computed using the

heteroskedasticity-robust standard error, so that it asymptotically follows a standard normal distribution under the null.

On the contrary, Mankiw, Romer, and Weil (1992) assume a conditional homoskedastic regression error and infer the

unknown parameters using standard t-test statistics only. The bottom panel also shows the p-values of the test statistics

M̂
(1)
n , Breusch and Pagan’s (1979), and White’s (1980) test statistics for the three groups of countries. We summarize

the key results of Table 3 as follows:

(a) For non-oil countries, the null hypothesis of no conditional heteroskedasticityH(1)0 is rejected by the maximum

test statistic M̂
(1)
n at the 5% significance level. This aspect is also affirmed by Breusch and Pagan’s (1979) and

White’s (1980) test statistics. Breusch and Pagan’s (1979) test statistic rejects the conditional homoskedasticity

hypothesis at the 5% level of significance, while White’s (1980) test statistic also reveals a p-value close to 5%,

that is 6.58%. This aspect implies that the t-test statistics should have been computed using the HC covariance

1Mankiw, Romer, and Weil (1992) assume that gt + δt = 0.05.
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matrix estimator to infer the unknown coefficients suitably.

(b) For intermediate countries, we draw the same conclusion as for non-oil countries. The maximum test statistic

M̂
(1)
n shows a p-value less than 5% and the other two test statistics also have p-values less than 5%, implying

that the t-ratios should have been computed using the HC covariance matrix estimator to infer the unknown

coefficients as for non-oil countries.

(c) On the contrary, for OECD countries, the opposite result is obtained. The maximum test statistic M̂
(1)
n has a

p-value substantially greater than 5%, so that we cannot reject the null hypothesis H(1)0 . This conclusion is

further reinforced by Breusch and Pagan’s (1979) and White’s (1980) test statistics that yield p-values greater

than 5%. Therefore, the standard t-test statistic can be used to infer the unknown coefficients, implying that

Mankiw, Romer, and Weil’s (1992) inference on the unknown parameters is suitable.

(d) Based on the inference results of the maximum test statistic, we compute the t-test statistics for the unknown

coefficient of log(Y60,t) using the HC covariance matrix estimator. For both non-oil and intermediate coun-

tries, they are negatively valued and turn out to be statistically significant as for the standard t-test statistics.

Although different standard errors are used from those in Mankiw, Romer, and Weil (1992), there exist opposite

relationships between economic growth and the initial value for both groups of countries. From this, the same

conclusion is reached as by Mankiw, Romer, and Weil (1992).

(e) A rather large influence is made to the standard errors for the coefficients of log(nt +gt +δt). The t-test statistic

for the coefficient of log(nt+gt+δt) using the standard error is −0.4575÷0.3074 ≅ 1.48 and its p-value is about

0.14, which is insignificant. On the contrary, the t-test statistic using the HC covariance matrix estimator and

its p-value are about −1.93 and 0.05, respectively, implying that the estimate of log(nt + gt + δt) is significant

at the 6% level of significance.

This result shows that the maximum test statistic M̂
(1)
n provides strong evidence for the sandwich-form asymptotic

covariance matrices entailed by conditionally heteroskedastic regression errors for non-oil and intermediate countries.

Nevertheless, the t-test statistics modified by this inference do not modify the original inference on the conditional

convergence hypothesis in Mankiw, Romer, and Weil (1992) for either group of countries.

4.2 Dynamic Model Estimation for Energy Prices

Classical time-series analysis attempts to specify a model without autocorrelation in the prediction errors and estimate

a model with a high precision rate for the parameter estimates. For this purpose, the empirical researcher popularly

estimates the conditional mean and variance models specified as AR and GARCH models, respectively.

In this section, we conduct an empirical practice using energy price growth rates. The typical model assumption

for the energy price growth rate is an AR-GARCH(1,1) model, and it has been empirically reported that the growth

rates of energy prices such as the liquefied petroleum gas (LPG) freight rate and growth rate of Brent crude oil

price are well estimated using the AR-GARCH(1,1) model. The AR order is typically selected using the Bayesian

information criterion and the autocorrelation in the residuals is tested using Ljung–Box’s (1978) Q-test statistic. If the

autocorrelation cannot be detected using the Q-test statistic, the researcher estimates the conditional heteroskedastic
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behavior based on a GARCH(1,1) model and attempts to estimate the parameters using maximum likelihood estimation

after supposing a particular distribution for the standardized error.

Specifying a correct model without autocorrelation in the prediction error and for conditional variance is important

for further examining the growth rates of energy prices. For example, Bai and Lam (2019) analyze the conditional

dependence structure among the LPG freight rate, product price arbitrage, and crude oil price by analyzing them using

a copula model estimation. Without having the correct models for the individual variables, estimating the next-stage

models using copula estimation can lead to the failure to infer the economic variables correctly. This is mainly because

the dependence structure between the individual variables cannot be correctly inferred without estimating the marginal

distribution of each variable.

In this section, we revisit the data analysis to estimate the marginal distributions of the energy price growth rates

in Bai and Lam (2019) by testing the conditional heteroskedasticity and autocorrelation assumption in the prediction

error. Seven marginal distributions of energy variables are examined in Bai and Lam (2019): the growth rates of the

Baltic LPG (BLPG) price, Brent crude oil price (BRENT), propane Mt Belvieu price (MB), propane Argus Far East

index (PAFEI), propane CP swap month 1 price (CPS), AFEI-US price index (AFEIUS), and AFEI-CP swap price

index (AFEICPS). They are weekly observed data from the second week of 2005 to the 35th week of 2016, and the

total number of observations is 601. Table 1 in Bai and Lam (2019) provides the descriptive statistics of the variables.

Using the data sets provided by Bai and Lam (2019), we verify whether their model analysis is affirmed by the

maximum test statistics. Bai and Lam (2019) employ Ljung–Box’s (1978))Q-test statistic and specify an AR(2) model

for BLPG, whereas they select an AR(1) model for the other variables. In addition, they adopt a GARCH(1,1) model

based on maximum likelihood estimation by assuming the skewed t-distribution for the standardized error distribution.

Table 3 in Bai and Lam (2019) presents Engle’s (1982) ARCH-LM test statistic to show that the standardized errors

are homoskedastic.

We conduct our empirical analysis for the same data sets using M̂
(1)
n and M̂

(2)
n . We summarize our empirical

inference results as follows:

(a) We first test for the sandwich-form asymptotic covariance matrix entailed by autocorrelated errors using M̂
(2)
n .

Specifically, for p = 1,2, . . . ,10, we estimate the AR(p) model using the LS estimation and testH(2)0 ∶ B∗ = C∗

using B̂n and Ĉn in (4) and (5), respectively by applying the wild bootstrap method. Here, we let Xt ∶=

(1, Yt−1, Yt−2, . . . , Yt−p)′. When applying the wild bootstrap method, we use the HAC estimation with the

quadratic kernel and bandwidth ` = ⌊n1/5⌋ − 1 in Andrews (1991). Table 4 reports the p-values estimated

using the wild bootstrap method and we denote p-values greater than 5% using boldface font. According to the

maximum test statistics, the AR(1) model is correctly specified for BLPG, BRENT, PAFEI, CPS, AFEIUS, and

AFEICPS. For these variables, ifH(2)0 cannot be rejected at the 5% level of significance, most AR models with

lags greater than unity turn out not to rejectH(2)0 . This aspect implies that the AR(2) model may not be the most

parsimonious model for BLPG, although AR(2) is also correct for the conditional mean.

(b) Nevertheless, the AR(1) model is not correctly specified for MB and AFEICPS, although Bai and Lam (2019)

select the AR(1) model using the Bayesian information criterion. For every p = 1,2, . . . ,10, AR(p) is not cor-
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rectly specified as implied by the maximum test statistic M̂
(2)
n . Although not reported in Table 4, we increased

the order of AR(p) to 15 in a further empirical analysis and also found that AR(p) generated autocorrelated er-

rors. On the contrary, if p ≥ 3, the AR(p) model is correctly specified for AFEICPS. Although the AR(9) model

yields a p-value less than 5% for M̂(2)
n , it does not show a consistent test result. For the AR(10) model, the

p-value rises above 5% again. Although not reported here, this feature also holds for AR models with degrees

greater than 10. These investigations allow us to conclude that the AR(1) model is dynamically misspecified for

MB and AFEICPS, which could not be detected using Ljung–Box’s (1978) Q-test statistic.

(c) We next test for conditional heteroskedasticity using M̂
(1)
n . As shown in Table 4, the p-values of the M̂

(1)
n

test statistics are less than 5% for BLPG, BRENT, MB, PAFEI, CPS, and AFEICPS, implying that conditional

heteroskedastic aspects are persistently observed from these variables.

(d) Finally, we test the correct model assumption using the information matrix equality. White (1982) provides

the information matrix test for the model specification of maximum likelihood estimation. Given that the AR-

GARCH(1,1) model specified by Bai and Lam (2019) is estimated using maximum likelihood estimation as-

suming a skewed t-distribution for the standardized error, we apply White’s (1982) information matrix equality

testing to Bai and Lam’s (2019) models. Specifically, if we let A∗ be the limit matrix of the negative Hessian

matrix and B∗ be the asymptotic covariance matrix of the scores for maximum likelihood estimation, we can

also test A∗ = B∗ using the maximum test statistic of the current study to test distributional misspecification for

standardized errors. We obtain the p-values of the maximum test statistic using the parametric bootstrap method

and report them in Table 5. The desired information matrix equality is not sufficient but is necessary for the

correct distributional specification. Hence, we cannot say whether the AR-GARCH(1,1) model with a skewed

t-distribution is the correct assumption for the DGP, even though we cannot reject A∗ = B∗. Nevertheless,

we can be assured that the model is misspecified if the hypothesis A∗ = B∗ is rejected. As shown in Table 5,

the information matrix equality for the correct distributional assumption cannot be rejected for BLPG, BRENT,

PAFEI, and CPS, implying that the skewed t-distribution fits the standardized error distribution sufficiently well.

On the contrary, the skewed t-distribution is misspecified for AFEIUS. The p-value for AFEIUS is 0.25%. Al-

though the AR-GARCH(1,1) model is correct for AFEIUS, the low p-value shows that the skewed t-distribution

is misspecified for the standardized error distribution. Likewise, the skewed t-distribution is also misspecified

for the standardized error distribution of AFEICPS. The AR-GARCH(1,1) model with an AR lag equal to unity

is dynamically misspecified, as already seen in Table 4, implying that the information matrix equality is unlikely

to hold for maximum likelihood estimation for AFEICPS. Finally, the information matrix equality test statistic

does not reject the hypothesis that A∗ = B∗ for MB, whereas it does not imply that the skewed t-distribution is

correctly specified for the standardized error distribution of MB. Table 4 already showed that AR-GARCH(1,1)

is dynamically misspecified, implying that the model is misspecified. Given that the information matrix equal-

ity is a necessary condition for the correct model specification, this result does not necessarily imply that the

AR-GARCH(1,1) model with a skewed t-distribution is the correct model for MB.

From the empirical analysis in this section, we find that the AR-GARCH(1,1) model is correctly specified for the
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energy variables examined by Bai and Lam (2019). Nevertheless, some of them such as MB, AFEIUS, and AFEICPS

are dynamically or distributionally misspecified.

5 Concluding Remarks

In the current study, we examine testing for the sandwich-form covariance matrix entailed by conditional heteroskedas-

ticity and autocorrelation in the regression error. Given that none of the conditional heteroskedastic or autocorrelated

errors yields the sandwich-form covariance matrix for the LS estimator, it is not necessary to estimate the covariance

matrix by the HC or HAC covariance matrix estimator. Only if the covariance matrix exhibits the sandwich-form

covariance matrix would it be desirable to estimate the asymptotic covariance matrix using the HC or HAC covariance

matrix estimator given that it is not the most efficient estimator under the information matrix equality. Because of this

fact, we first examine testing for the sandwich-form covariance matrix before applying the HC or HAC covariance

matrix estimator. For this purpose, we apply the testing methodologies proposed by Cho and White (2015) and Cho

and Phillips (2018) to fit the context of this study and define the maximum test statistics by extending the scope of

their maximum test statistic. We derive the null, alternative, and local alternative limit distributions of the maximum

test statistics and further affirm the theories on the maximum test statistics through a simulation. We also apply the

maximum test statistics to empirical data sets popularly examined in the literature on economic growth and the growth

rates of energy prices, affirming the empirical result in Mankiw, Romer, and Weil (1992) as well as confirming that the

model assumptions for the growth rates of the energy prices in Bai and Lam (2019) are correct for many of the energy

variables, although some of them are misspecified.

Appendix: Proofs

Proof of Theorem 1: For each i = 1 and 2, Theorem 2 of Cho and Phillips (2018) implies that for j = 1 and 2, the local

alternative approximations of B̂(i)j,n, Ŝ(i)j,n, and Ê
(i)
j,n are equivalent and obtained as 1

2
tr[(V

(i)
∗ +

√
nK

(i)
o,n)

2] + oP(1),

where

K(i)o,n ∶= M(i)
o,n +

d

∑
j=1

(θ̂j,n − θj∗)S
(i)
j,∗,

M(i)
o,n ∶= (Q

(i)
∗ )

−1
(Q(i)n (ξ∗) −P(i)n (ξ∗) −Q

(i)
∗n +P

(i)
∗n) and S

(i)
j∗ ∶= (P

(i)
∗ )

−1
(
∂

∂θj
Q(i)(ξ∗) −

∂

∂θj
P
(i)
∗ (ξ∗)) .

Further, the symmetry between P
(i)
∗ and Q

(i)
∗ implies that for j = 1 and 2, the local alternative approximations of

B̃
(i)
j,n, S̃(i)j,n, and Ẽ

(i)
j,n are equivalently obtained as 1

2
tr[(Ṽ

(i)
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√
nK̃

(i)
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2] + oP(1), where
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That is, V
(i)
∗ = −Ṽ

(i)
∗ and K

(i)
o,n = −K

(i)
o,n, so that for j = 1 and 2, the local alternative approximations of B̂(i)j,n, Ŝ(i)j,n,

and Ê
(i)
j,n are equivalent to the local alternative approximations of B̃(i)j,n, S̃(i)j,n, and Ẽ

(i)
j,n. Therefore, it now follows that

M̂(i)
n ∶= max

j=1,2
[B̂
(i)
j,n, Ŝ

(i)
j,n, Ê

(i)
j,n, B̃

(i)
j,n, S̃

(i)
j,n, Ẽ

(i)
j,n] =

1

2
tr[(V

(i)
∗ +

√
nK(i)o,n)

2
] + oP(1).

In addition, Corollary 1 of Cho and Phillips (2018) implies that 1
2
tr[(

√
nK

(i)
o,n)

2] ⇒ Z(i)′Ω(i)∗ Z
(i), suggesting that

1
2
tr[(V

(i)
∗ +

√
nK

(i)
o,n)

2] ⇒ (Z(i)′ +V
(i)′
∗ Ω(i)−1/2∗ )Ω(i)∗ (Z(i) +Ω(i)−1/2∗ V

(i)
∗ ). Note that V̈

(i)
∗ ∶= Ω(i)−1/2∗ V

(i)
∗ , so

that M̂(i)
n ⇒ (Z(i) + V̈

(i)
∗ )′Ω(i)∗ (Z(i) + V̈

(i)
∗ ), as desired. ∎

Proof of Corollary 1: For each i = 1 and 2, given the null hypothesis H(i)0 , P̄
(i)
∗ = Q̄

(i)
∗ = 0. Therefore, Theorem 1

implies that M̂(i)
n ⇒ Z(i)′Ω(i)∗ Z

(i). ∎

Proof of Theorem 2: For i = 1 and 2, we first note that M̂(i)
n = max[Ṁ

(i)
n ,M̈

(i)
n ], where Ṁ(i)
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Likewise, if we let µ̈(i)∗ be the leading term of M̈(i)
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2,∗]. This completes the proof. ∎
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DGP1: H(1)0 orH(2)0

Test Statistics Levels\n 200 400 600 800 1,000 1,200
1% 0.93 0.90 0.70 1.17 0.77 1.03

M̂
(1)
n 5% 4.70 4.63 4.77 4.47 4.30 4.80

10% 9.23 8.83 9.73 9.53 9.23 9.97
1% 0.27 0.60 0.87 0.67 0.60 1.23

M̂
(2)
n 5% 2.83 4.07 3.97 3.83 4.10 6.00

10% 6.10 8.83 8.60 8.37 7.63 11.40

DGP2: H(1)1 orH(2)0

Test Statistics Levels\n 200 400 600 800 1,000 1,500
1% 13.00 35.93 57.00 73.97 84.93 96.83

M̂
(1)
n 5% 28.63 56.33 76.13 87.03 94.43 98.97

10% 39.33 66.30 83.10 91.93 96.70 99.43
1% 0.33 0.57 0.97 0.87 0.67 1.20

M̂
(2)
n 5% 3.20 5.20 5.03 5.23 5.00 5.63

10% 8.07 11.37 11.03 11.20 11.57 11.73

DGP3: H(1)1 orH(2)1

Test Statistics Levels\n 200 400 600 800 1,000 2,000
1% 14.70 38.90 58.87 75.70 84.80 99.33

M̂
(1)
n 5% 29.10 59.27 77.57 88.87 93.93 99.87

10% 39.80 68.10 84.13 93.33 96.33 100.0
1% 5.17 18.70 24.53 30.07 37.27 67.73

M̂
(2)
n 5% 18.13 40.27 48.63 54.07 60.87 86.10

10% 28.83 51.97 59.17 65.53 70.27 91.43

Table 1: EMPIRICAL REJECTION RATES OF THE MAXIMUM TEST STATISTICS UNDER THE NULL AND ALTER-
NATIVE HYPOTHESES (IN PERCENT). This table shows the rejection rates of the maximum test statistics M̂

(1)
n

and M̂
(2)
n under H(1)0 ∶ σ2

∗E[XtX
′
t] = E[U2

t XtX
′
t], H

(1)
1 ∶ σ2

∗E[XtX
′
t] ≠ E[U2

t XtX
′
t], H

(2)
0 ∶ E[U2

t XtX
′
t] =

limn→∞ n−1∑nt=1∑
n
τ=1t≠τ E[UtUτXtX

′
τ ], and H(2)1 ∶ E[U2

t XtX
′
t] ≠ limn→∞ n−1∑nt=1∑

n
τ=1t≠τ E[UtUτXtX

′
τ ].

Here, the HC and HAC covariance matrix estimators are used to estimate the covariance matrices consistently. In
particular, Andrews’s (1991) quadratic kernel is employed to estimate the HAC covariance matrix estimator with the
bandwidth ⌊n1/5⌋ − 1.
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DGP1: H(1)0 orH(2)0

Hypotheses \n 200 400 600 800 1,000 1,200
H
(1)
0 92.57 91.40 91.40 91.93 91.80 89.57
H
(2)
0 4.60 4.53 4.63 4.23 4.10 4.43
H
(2)
1 2.83 4.07 3.97 3.83 4.10 6.00

Sum 100.0 100.0 100.0 100.0 100.0 100.0

DGP2: H(1)1 orH(2)0

Hypotheses \n 200 400 600 800 1,000 1,500
H
(1)
0 69.17 41.67 23.00 12.37 5.30 0.97
H
(2)
0 27.63 53.13 71.97 82.40 89.70 93.40
H
(2)
1 3.20 5.20 5.03 5.23 5.00 5.63

Sum 100.0 100.0 100.0 100.0 100.0 100.0

DGP3: H(1)1 orH(2)1

Hypotheses \n 200 400 600 800 1,000 2,000
H
(1)
0 57.80 24.87 10.60 4.83 1.87 0.00
H
(2)
0 24.07 34.87 40.77 41.10 37.27 13.90
H
(2)
1 18.13 40.27 48.63 54.07 60.87 86.10

Sum 100.0 100.0 100.0 100.0 100.0 100.0

Table 2: EMPIRICAL REJECTION RATES OF THE TEST STATISTICS USING THE STP (IN PERCENT). This ta-
ble shows the proportion of the hypotheses selected by the STP when the maximum test statistics M̂

(1)
n and M̂

(2)
n

are applied to the data observations generated under DGP1, -2, and -3. As before, M̂(1)
n and M̂

(2)
n , respectively

test H(1)0 ∶ σ2
∗E[XtX

′
t] = E[U2

t XtX
′
t] against H(1)1 ∶ σ2

∗E[XtX
′
t] ≠ E[U2

t XtX
′
t]; and H(2)0 ∶ E[U2

t XtX
′
t] =

limn→∞ n−1∑nt=1∑
n
τ=1t≠τ E[UtUτXtX

′
τ ] against H(2)0 ∶ E[U2

t XtX
′
t] ≠ limn→∞ n−1∑nt=1∑

n
τ=1t≠τ E[UtUτXtX

′
τ ].

For the implementation of the STP, we first test H(2)0 and then test H(1)0 if H(2)0 is rejected. We also let the level
of significance α be 5%. Here, the HC and HAC covariance matrix estimators are used to estimate the covariance
matrices consistently. In particular, Andrews’s (1991) quadratic kernel is employed to estimate the HAC covariance
matrix estimator with the bandwidth ⌊n1/5⌋ − 1.
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Non-Oil Intermediate OECD
Constant 1.9194 2.2497 2.1404
Std. Error 0.8337 0.8547 1.1807
Heteroskedasticity-Robust Std. Error 0.8042 0.9246 1.1445
log(Y60,t) -0.1409 -0.2278 -0.3499
Std. Error 0.0520 0.0573 0.0657
Heteroskedasticity-Robust Std. Error 0.0482 0.0560 0.0649
log(st) 0.6472 0.6459 0.3901
Std. Error 0.0867 0.1039 0.1761
Heteroskedasticity-Robust Std. Error 0.1010 0.1318 0.2299
log(nt + gt + δt) -0.3023 -0.4575 -0.7662
Std. Error 0.3044 0.3074 0.3452
Heteroskedasticity-Robust Std. Error 0.2411 0.2363 0.2704

p-values for Heteroskedasticity (in Percent)
M̂
(1)
n 0.49 2.48 61.33

Breusch-Pagan’s (1978) test 2.74 3.06 21.87
White’s (1980) test 6.58 1.37 51.31

Table 3: p-VALUE OF TESTING FOR CONDITIONAL HETEROSKEDASTICITY BY THE MATRIX EQUALITY TEST-
ING (IN PERCENT). The dependent variable of the model is the log of GDP per working-age person in 1985. This
table shows the p-values of the matrix equality tests using the same data and models in Mankiw, Romer, and Weil
(1992). The table also provides Breusch and Pagan’s (1978) and White’s (1980) conditional heteroskedasticity test
statistics. The standard errors of the LS estimators are obtained by assuming conditional homoskedasticity and het-
eroskedasticity. The p-values denoted by the boldface font indicate that they are less than 5%. As a result, we obtain
the same inference result as in Mankiw, Romer, and Weil (1992), although they do not accommodate conditional
heteroskedasticity when testing zero coefficients using the t-test statistics.
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BLPG BRENT MB PAFEI
Lags H(1)0 vs. H(1)1 H

(2)
0 vs. H(2)1 H

(1)
0 vs. H(1)1 H

(2)
0 vs. H(2)1 H

(1)
0 vs. H(1)1 H

(2)
0 vs. H(2)1 H

(1)
0 vs. H(1)1 H

(2)
0 vs. H(2)1

1 0.00 26.67 0.03 96.67 0.01 6.31 0.86 68.25
2 0.01 81.82 0.11 40.23 0.04 4.49 0.59 80.64
3 0.00 86.05 0.10 30.20 0.07 4.18 0.09 91.11
4 0.01 94.97 0.02 6.06 0.13 2.51 0.02 98.84
5 0.03 96.62 0.05 11.88 0.01 1.85 0.10 96.76
6 0.04 99.55 0.02 12.89 0.04 4.15 0.10 94.15
7 0.09 80.45 0.01 10.60 0.03 3.26 0.05 71.65
8 0.38 43.99 0.01 12.80 0.04 2.37 0.01 80.64
9 1.13 43.57 0.01 17.04 0.08 2.88 0.03 71.58

10 1.49 44.59 0.03 16.40 0.18 3.95 0.06 66.72
CPS AFEIUS AFEICPS

Lags H(1)0 vs. H(1)1 H
(2)
0 vs. H(2)1 H

(1)
0 vs. H(1)1 H

(2)
0 vs. H(2)1 H

(1)
0 vs. H(1)1 H

(2)
0 vs. H(2)1

1 1.48 57.92 2.50 6.51 0.03 0.15
2 1.41 10.47 4.06 15.34 0.06 1.06
3 1.47 23.08 2.91 15.47 0.06 5.01
4 2.79 29.61 3.32 14.77 0.22 9.37
5 4.64 16.01 4.38 13.72 0.28 8.91
6 4.59 31.65 8.55 13.65 0.37 6.09
7 1.74 21.51 12.34 13.24 0.40 8.92
8 0.30 30.13 21.39 27.07 0.81 14.74
9 0.26 39.55 29.71 43.42 1.11 4.19

10 0.54 42.43 41.11 39.27 1.30 8.90

Table 4: p-VALUES OF TESTING FOR THE INFLUENCE OF CONDITIONAL HETEROSKEDASTICITY AND AUTOCOR-
RELATION (IN PERCENT). This table shows the p-values of the maximum test statistics M̂(1)

n and M̂
(2)
n obtained by

applying them to the models and energy data in Bai and Lam (2019). The p-values denoted by the boldface font indi-
cate that they are greater than 5%. As a result, the AR(1) and AR(2) models are dynamically and correctly specified
for BLPG, BRENT, PAFEI, CPS, and AFEIUS. On the contrary, the AR(1) model specified for MB and AFEICPS is
misspecified.

BLPG BRENT MB PAFEI CPS AFEIUS AFEICPS
Information matrix test statistic 31.80 22.90 63.05 83.55 56.90 0.25 0.35

Table 5: p-VALUE OF THE INFORMATION MATRIX EQUALITY TEST (IN PERCENT). This table shows the p-values
of the maximum test statistic of the correct specification for the AR-GARCH(1,1) model estimated by assuming that
the standardized error follows a skewed t-distribution. Using the maximum test statistic, we test the information matrix
equality. As a result, the maximum test statistic cannot reject the hypothesis that the AR-GARCH(1,1) model driven
by the skewed t-distribution is correctly specified for BLPG, BRENT, MB, PAFEI, and CPS, whereas the same model
is misspecified for AFEIUS and AFEICPS.
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