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Abstract

This study provides an econometric methodology to test for a linear structural relationship among
economic variables. For this, we propose the so-called distance-difference (DD) test statistic and show
that it has omnibus power against arbitrary nonlinear structural relationships. If the DD test statistic
rejects the linear model hypothesis, a sequential testing procedure assisted by the DD test statistic can
consistently estimate the degree of polynomial function that arbitrarily approximates the nonlinear struc-
tural equation. Using extensive Monte Carlo simulations, we confirm the DD test’s finite sample proper-
ties and compare its performance with the sequential testing procedure assisted by the J-test statistic and
moment selection criteria. Finally, we empirically investigate the structural relationship between the log
wage and work experience years using Card’s (1995) National Longitudinal Survey data and affirm their
inferential results by our methodology.
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1 Introduction

“To climb steep hills requires a slow pace at first.” — William Shakespeare.

In structural empirical studies, model specification is important because it affects inferences as well

as counterfactual experiments to draw important policy implications. An important aim of this study is to

develop an efficient and yet easy-to-use method for researchers to test for a linear structural relationship

between economic variables. The testing methodology proposed in this paper extends the ones already

developed for reduced-form models.

Studies such as Bierens (1990) and Baek, Cho, and Phillips (2015) developed a methodology to test for a

linear model hypothesis against general model misspecification in a reduced-form framework. In particular,

Baek, Cho, and Phillips (2015) obtained the null limit distribution of the quasi-likelihood ratio (QLR) test

statistic by estimating the power coefficient of the economic variable of interest, showing that it has omnibus

power. We apply their methodology to the generalized method of moment (GMM) framework and test for

a linear structural model hypothesis using a distance-difference (DD) test statistic as in Baek, Cho, and

Phillips (2015). We then derive the null limit distribution of the DD test statistic, to show that it has omnibus

power against a linear structural model.

Cho and Phillips (2018) further developed a sequential testing procedure using the QLR test statistic

to consistently estimate a nonlinear reduced-form equation. In this study, we apply the sequential testing

procedure to the DD test statistic as in Cho and Phillips (2018), to find that the unknown polynomial struc-

tural model can be consistently estimated using this approach. In case the structural equation differs from

any polynomial equation, the polynomial equation estimated using finite samples and our sequential testing

approach can be understood as an approximation of the structural equation.

We also compare our testing procedures with some widely used ones in the literature. We first consider

the Sargan (1958, 1988) and Hansen (1982)) J-test used for a correctly specified structural model hypothesis

and the validity of instrumental variables (e.g., Newey, 1985). We conduct extensive simulations to com-

pare the two test statistics and find that the J- and DD test statistics complement each other. In particular,

the DD test statistic outperforms the J-test statistic in sequential testing. Second, we investigate Andrews’s

procedure (1999) of applying the Akaike (1973), Schwarz (1978), and Hannan and Quinn (1979) infor-

mation criteria for selecting moment conditions, and thus introduce a procedure to ensure the number of

moment conditions that identify unknown parameters. We compare the moment selection criteria (MSCs)

and sequential testing procedure using simulations, to find that sequential testing outperforms MSCs.

In the semi/nonparametric literature, studies such as Hong and White (1995), Ai and Chen (2003),

1



Newey and Powel (2003), and Chen and Pouzo (2015) investigated how to estimate and test for unknown

structural equations using various semi-nonparametric methods. In contrast to these methods, the DD test

statistic is fully parametric. In addition, the DD test statistic can be used as a diagnostic test statistic before

applying their methodologies. If the null model is not rejected by the DD test statistic, no need would arise

to estimate the structural model using nonparametric methods.

The rest of this paper is structured as follows. Section 2 tests for a nonlinear structural relationship and

discusses its motivation and associated problems. This section also examines the linearity condition testing

by formally introducing the DD test statistic. The null limit distribution and power properties of the test

statistic are also examined. Section 3 extends the linear structure testing to polynomial structures using the

same test statistic. Furthermore, sequential testing is applied to estimate the polynomial structural equation.

Section 4 reports Monte Carlo simulations and compares the DD test statistics with other methodologies,

while Section 5 presents an empirical application. Finally, Section 6 concludes the paper. Mathematical

proofs are presented in the appendix.

Before moving to the next section, we introduce some useful mathematical notations. For functions f

and j = 1, 2, . . ., let (dj/djx)f(x̄) denote (dj/dxj)f(x)|x=x̄ for notational simplicity. We also assume that

ι is the n× 1 vector of unity.

2 Motivation and Structural Linearity Testing

2.1 Motivation and Heuristics

To motivate this study, we first present a simple model. Assume that Yt and Xt are dependent and posi-

tively valued explanatory variables respectively, such that for the unknown function m(·), their structural

relationship is

Yt = m(Xt) + Ut. (1)

In (1), let Xt and Ut be correlated. One of the main aims of this study is to test whether the structural

relationship between Yt and Xt, m(·), is linear:

H0 : m(Xt) = ξ0 + ξ1Xt a.s. (2)

Some of the economic applications motivating this study include Mincer’s (1958) linear model between

log wage and education, given the individual’s work experience years and their square term, and Balassa and

Samuelson’s (1964 1964) linear structural model between the ratio of purchasing power parity to exchange
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rate and the per capita income differentials.

We are motivated to test the null hypothesis from the possibility that the linear model is arbitrarily mis-

specified. For example, the linear relationship between log wage and education years posited by Mincer

(1958) has been questioned in the literature. Mincer (1997) himself obtained a nonlinear education yield

function by assuming heterogeneous preferences and earnings opportunities for individuals. As another ex-

ample, Card and Krueger (1992) obtained a nonlinear return to education along with the so-called credential

effect. In such cases, estimating linear models using GMM estimation would introduce an asymptotic bias

(e.g., Hall and Inoue, 2003), rendering the asymptotic distribution model dependent.

A number of studies have tested the linearity condition using the semi- or nonparametric method. For

example, for Xt as an exogenous variable, Hong and White (1995) estimated m(·) using a sieve series

estimation method, to provide an omnibus specification testing. For Xt as an endogenous variable, Chen

and Pouzo (2015) estimated m(·) using a penalized semi-parametric minimum distance estimation method

and a sieve series under the complete conditional distribution condition of Xt on instrumental variables.

They also provided a methodology to test the model hypothesis using the Wald and QLR test statistics, and

further showed that m(·) can be consistently estimated by letting the number of sieve series to increase

as the sample size increases, introducing a methodology to consistently test the correct model assumption.

Nevertheless, for a finite sample size, the testing results would depend on the selected penalty and/or degree

of sieves.

In this study, we aim to provide a test statistic that consistently detects arbitrary nonlinearity rather

well and overcomes the challenges associated with sieve series estimation, and thus lead to a simple and

straightforward testing procedure.

For this, we first extend the approach of Bierens (1990) and Baek, Cho, and Phillips (2015), who estimate

m(·) whenXt is exogenous. We then heuristically describe our testing procedure. We specify the parametric

model for the structural error Ut as follows:

M := {mt(ξ0, δ, β, γ) := Yt − ξ0 − ξ1Xt − βXγ
t : (ξ0, ξ1, β, γ) ∈ Ω ⊂ R4}.

We then estimate the unknown parameters using the GMM estimation method. Note that the linear model

is nested in M as a special case. If γ∗ = 0, 1, or β∗ = 0, then Yt and Xt would be structurally linear,

requiring the linear structure hypothesis to be jointly tested via the hypotheses on γ∗ and β∗. In this study,

we apply the likelihood-ratio (LR) test principle to test the linearity hypothesis. That is, we compare the

Sargan (1958, 1988) and Hansen (1982) J-test statistics implied byM and the linear model, and reject the
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linearity hypothesis if the difference between the two J-test statistics is sufficiently large. We formally define

our test statistic below; this is the DD test statistic.

The DD test statistic based onM has the following useful properties over other methodologies in the

literature. First, the DD test statistic is consistent for general nonlinearity, because the power transform Xγ
t

in M is a sieve basis. In any continuous function m(·), including (·)j as regressors with j = 1, 2, 3, . . .

would approximate m(·) arbitrarily well (e.g., Chen and Liu, 2014); this means that if m(·) is a linear func-

tion, adding any sieve basis to the linear function as regressor would fail to reduce the approximation error

measured by the GMM distance. Here, we propose the DD test statistic to compare the GMM distances

measured by the linear model andM in parallel with the LR test statistic. Note that the degree of sieve basis

γ is estimated to obtain the optimum sieve that best improves the DD test statistic, instead of including the

maximum number of sieve series limited by sample size. Second, we compute the DD test statistic using

the GMM estimation method without assuming the complete conditional probability distribution of Xt on

instrumental variables; thus, we do not consider the penalty function ofm(·) in our estimation. Furthermore,

M is a fully parametric model, making the associated inferences straightforward. Third, the DD test statistic

can play the role of diagnostic test statistic before estimating m(·) using other methodologies. Note that Ai

and Chen (2003), Newey and Powel (2003), and Chen and Pouzo (2015) estimate the unknown structural

equation using the semi-nonparametric minimum distance and nonparametric two-stage least squares esti-

mation methods, respectively; these methods can be computationally demanding. If the DD test statistic

does not reject the linear model assumption, no need would arise for their estimations.

A popular trend in the literature is to test the linear model assumption usingM or such other models.

First, when Xt is an exogenous variable, Bierens (1990) and Baek, Cho, and Phillips (2015) tested the

linear model misspecification using models similar toM, as mentioned above. However, to the best of our

knowledge, no study has so far tested the linearity hypothesis when Xt is endogenous. Second, the Sargan

(1958, 1988) and Hansen (1982) J-test statistics typically test the structural model misspecification as well

as validity of the instrumental variables. Thus, the J-test statistic rejecting the null does not necessarily imply

that the linear structural model is misspecified. It may reject the null because the instrumental variables are

not valid. However, the DD test statistic presumes valid instrumental variables and focuses on testing the

functional form misspecification with omnibus power against general nonlinear functions.

2.2 Testing Environment and Assumptions

We now formally discuss the model and data structure of interest by generalizingM. Assume that {(W′
t,Z
′
t,

Ut)
′ := (Xt,D

′
t,Z
′
t, Ut)

′ : t = 1, 2, . . .} is a strictly stationary ergodic process, Xt is a positively valued
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endogenous variable, Dt(∈ Rk) is an exogenous variable, and Zt(∈ Rm) is an instrumental variable with

k and m ∈ N. Given this data generating process (DGP), we also assume that for some (δ0∗, δ
′
∗)
′, Yt is

structurally associated with other variables by

Yt = ξ0∗ + W′
tδ∗ +m(Xt) + Ut,

such that for the instrumental variable Zt, E[UtZt] = 0 and the order condition hold for structural model

estimation, namely, Zt ∈ Rm with m ≥ k + 2. For notational simplicity, we also divide the parameter

vector δ∗ into (ξ1∗,η
′
∗)
′ such that W′

tδ∗ = ξ1∗Xt + D′tη∗.

Given the DGP condition, we consider a model specified to test the functional form ofm(·). In particular,

we assume that the empirical researcher is interested in testing the linear structure between Yt and Xt. To

address this, we construct a model attached by a power transform of Xt as follows:

M1 :=
{
mt(ω) := Yt − ξ0 −W′

tδ − βX
γ
t : ω := (ξ0, δ

′, β, γ)′ ∈ Ω ⊂ Rk+4
}
.

Here, we use subscript “1” to test the linearity hypothesis of the structure, and the other subscripts to gen-

eralize the linearity hypothesis to other polynomial structures. Note thatM1 could be misspecified under a

general nonlinear structure between Yt and Xt. As Hall and Inoue (2003) have pointed out, in such cases,

the power function inM1 estimated using the GMM method is an approximation for m(·), and so the limit

behavior of the estimated parameter can be different from that of a correctly specified model. However,M1

is correctly specified for the linear structure between Yt and Xt. By imposing the conditions

H0,1 : β∗ = 0, H0,2 : γ∗ = 0, or H0,3 : γ∗ = 1,

we can generate a linear structure between Yt and Xt and thus hypothesize the researcher’s interest as the

union of the sub-conditions H0 := H0,1 ∪ H0,2 ∪ H0,3. The negation of H0 is an alternative hypothesis:

H1 : β∗ 6= 0, γ∗ 6= 0 or 1. For simplicity, we assume that Ω0 := {ω ∈ Ω : β = 0, γ = 0, or γ = 1} and

Ω1 := Ω \Ω0 are the null and alternative parameter spaces, respectively.

Testing the null hypothesis involves nonstandard problems. Null hypothesis H0 is associated with an

identification problem. If β∗ = 0, γ∗ is unidentified, and Davies’ (1977, 1987) identification arises under

H0,1. Similarly, if γ∗ = 0, only ξ0∗ + β∗ is identified, implying that ξ0∗ and β∗ are not separately identified,

and Davies’ (1977, 1987) identification arises in a different manner under H0,2 from H0,1. Furthermore,

Davies’ (1977, 1987) identification arises under H0,3, implying that neither ξ1∗ nor β∗ is separately identi-
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fied. Thus, we find three composite identification problems with H0. We call this the trifold identification

problem following Baek, Cho, and Phillips (2015).

We next test the hypothesis under the following regularity conditions and formalize the above DGP and

model conditions.

Assumption 1. (i) {(W′
t,Z
′
t, Ut)

′ := (Xt,D
′
t,Z
′
t, Ut)

′ ∈ R2+k+m : t = 1, 2, . . .} (k andm ∈ N) is a strict

stationary ergodic (SSE) sequence such that Xt has a positive value with probability 1;

(iii) for each j, {Zt,jUt,Ft} is an adapted mixingale of size −1, where Zt,j is the jth-row element, and

Ft is the smallest σ-field generated by {Ut,Zt,Wt, Ut−1,Zt−1,Wt−1, . . .};

(iv) (a) for each j, E[Z4
t,j ] <∞ and E[U4

t ] <∞;

(b) for each j, E[D2
t,j ] <∞ and E[m2(Xt)] <∞, where Dt,j is the jth-row element of Dt;

(v) (a) var(n−1/2Z′U) converges to Σ as n→∞, where n is the sample size;

(b) var(n−1/2Z′U) is PD uniformly in n, and Σ is finite and PD;

(vi) (a) Mn converges to M0, as n→∞;

(b) Mn is symmetric and PD uniformly in n, and M0 is finite and PD. �

Assumption 2. (i) The structural relationship between Yt and Wt is specified as M1 := {mt(ω) :=

Yt − ξ0 −W′
tδ − βX

γ
t : ω := (ξ0, δ

′, β, γ)′ ∈ Ω ⊂ Rk+4}, where Ω := Ξ ×∆ × B × Γ such that Ξ,

∆, B, and Γ := [γ, γ] are convex and compact in R, Rk+1, R, and R, respectively, and 0 and 1 are interior

elements of Γ;

(ii) for the measurable functions m(·) and (ξ0∗, δ
′
∗)
′ ∈ R2+k, Yt = ξ0∗ + W′

tδ∗ +m(Xt) + Ut; and

(iii) E[VtZ
′
t] and

∑n
t=1 VtZ

′
t have full row ranks uniformly in n, where Vt = (1,W′

t)
′. �

Assumption 3. An SSE sequence {Mt} exists such that (i) E[M2
t ] <∞ and supγ∈Γ |X

γ
t | ≤Mt, and

(ii) E[X4
t ] <∞ and E[L4

t ] <∞. �

Remarks.

(a) Assumptions 1, 2, and 3 impose the DGP, model, and moment conditions, respectively. Assumption 1

is considered throughout this study, whereas Assumptions 2 and 3 are considered only when extending

the linear structure testing to polynomial structures.

(b) The DGP and moment conditions are not sufficient to apply the functional central limit theorem

(FCLT) as in Baek, Cho, and Phillips (2015). However, the DGP and moment conditions of this study

are regular conditions to apply Scott’s (1973) mixingale central limit theorem (CLT) to n−1/2
∑

ZtUt.

We can obtain the DD test statistic null limit distribution by applying the CLT differently from Baek,

Cho, and Phillips (2015), as detailed below.
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(c) The DGP condition allows for a dynamic misspecification. If {Ut,Ft} forms a martingale different

array (MDA), var(n−1/2Z′U) would be identical uniformly in n.

(d) For power transformation, Xt needs to be positive. Otherwise, Xt would be transformed to other pos-

itive variables, but we can allow them to be Xt here. Since this transformation does not substantially

modify our theory, we simply assume that Xt has a positive value. �

2.3 Testing Structural Linearity

We next estimate the unknown parameters using the GMM method, assuming the following quadratic dis-

tance function:

dn(ω) := (Y − βX(γ)−Vς)′ZMnZ
′(Y − βX(γ)−Vς),

where Y := (Y1, . . . , Yn)′, X(γ) := (Xγ
1 , . . . , X

γ
n)′, Vt := (1,W′

t)
′, V := [V′1, . . . ,V

′
n]′, Z :=

[Z′1, . . . ,Z
′
n]′, and ς := (ξ0, δ

′)′. Note that we obtain the GMM estimator by minimizing the quadratic

distance function: ω̂n := arg minω∈Ω dn(ω). We also assume that ω̃n := arg minω∈Ω dn(ω) such that

β = 0. If β = 0, γ is a placeholder, with ω̃n estimating the linear structure between Yt and Xt.

To test the linear structure using Wald’s (1943) test principle is challenging. As Baek, Cho, and Phillips

(2015) pointed out, when a multifold identification problem is associated with the null hypothesis, the Wald

test statistic can most probably be unbounded under the null, because two parameters belonging to the null

parameter space constrained by one of the sub-null hypotheses may belong to the alternative parameter space

characterized by another sub-alternative hypothesis.

However, we apply the LR test principle to overcome the multiple identification parameter problem.

Specifically, we compare the GMM distances obtained under H0 and H1 to test the linearity hypothesis.

The DD test statistic is defined as follows:

Dn,1 := n−1 {dn(ω̃n)− dn(ω̂n)} .

As earlier, subscript “1” indicates that the DD-statistic tests the linear structure between Yt andXt. Note that

M1 approximates the unknown functional form of m(·) by the power transform, and the DD test statistic

exploits this approximation to gain the test statistic marginal power; this is exactly the same motivation as

that of the LR test statistic.

The DD and QLR test statistics are defined similarly, but have different structures. The GMM distance

is defined by the weighted distance of the orthogonality conditions, and not by the prediction error, to obtain

a null limit distribution different from that of the QLR test statistic.
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We specifically examine how this aspect is associated with the null limit distribution by first deriving the

null limit approximations of the test under the sub-hypotheses (H0,1, H0,2, and H0,3), and then combining

them into a single statistic to yield the null limit distribution of the DD test statistic.

In our first step, we examine the limit approximation under H0,1 : β∗ = 0. Note that since γ∗ is not

identified underH0,1, we conduct GMM optimization with respect to γ in a later stage compared to for any

other parameter: minγ minβ minς dn(ω). If Q1 := Z̈(I − Z̈′V(V′Z̈Z̈′V)−1V′Z̈)Z̈′, Z̈ := ZM
1/2
n , and

U := (U1, . . . , Un)′, then we have

D(β=0)
n,1 (ε) := −infγ∈Γ(ε)infβn

−1{dn(β; γ)− dn(0; γ)} = supγ∈Γ(ε)

1

n

{X(γ)′Q1U}2

X(γ)′Q1X(γ)
, (3)

where Γ(ε) := Γ\{(−ε, ε)∪(1−ε, 1+ε)}, andD(β=0)
n,1 (ε) denotes the DD test statistic designed to testH0,1.

Here, the γ space is modified to Γ from Γ(ε) to exclude 0 and 1. If γ = 0 or 1, the model would introduce

the identification problems under H0,2 and H0,3 and complicate the derivation. We relax this restriction, as

shown below, to derive the DD test statistic limit distribution underH0.

Thus far, we provide the limit distribution of D(β=0)
n,1 (ε) underH0,1:

Lemma 1. Given Assumptions 1, 2, 3, and H0,1, for each ε > 0, we have D(β=0)
n,1 (ε) ⇒ supγ∈Γ(ε)Z2

1 (γ),

where for each γ ∈ Γ(ε), Z1(γ) ∼ N(0, ρ(γ, γ)) such that for each pair (γ, γ′), E[Z1(γ)Z1(γ′)] =

ρ1(γ, γ′) := κ1(γ, γ′)/{σ2
1(γ)σ2

1(γ′)}1/2, κ1(γ, γ′) := E[Xγ
t Z̃′t]J1Σ̃J1E[Z̃tX

γ′

t ], σ2
1(γ) := E[Xγ

t Z̃′t]J1

E[Z̃tX
γ
t ], Z̃t := M

1/2
0 Zt, Σ̃ := M

1/2
0 ΣM

1/2
0 , and J1 := I− E[Z̃tV

′
t](E[VtZ̃

′
t]E[Z̃tV

′
t])
−1E[VtZ̃

′
t]. �

Remarks.

(a) Although Lemma 1 represents the null limit distribution as a Gaussian stochastic process function, the

associated Gaussian process is essentially the product of a deterministic γ function and a multivariate

normal random variable. If for each γ, Z̃1(γ) := π1(γ)′G, where π1(γ) := J1E[Z̃tX
γ
t ]/σ2

1(γ)1/2

and G ∼ N(0, Σ̃), then the covariance kernel structure of Z̃1(·) is identical to that of Z1(·), implying

that the nonlinearity of Z1(·) stems from π1(·).

(b) The covariance kernel of Z1(·) depends on the form of Mn. If Mn consistently estimates Σ−1, then

Σ̃ = I and κ1(γ, γ′) = E[Xγ
t Z̃′t]J1E[Z̃tX

γ′

t ], because J1 is an idempotent matrix, and so for each γ,

ρ1(γ, γ) = 1, and

ρ1(γ, γ′) =
κ1(γ, γ′)√

κ1(γ, γ)
√
κ1(γ′, γ′)

.

(c) The DD test statistic null limit distribution can be obtained through simulation. If π̂n,1(·) and Σ̂n con-

sistently estimate π1(·) and Σ̃, respectively, the limit distribution of supγ∈Γ(ε)(π̂n,1(γ)′Ẑn)2 would
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estimate the null limit distribution of D(β=0)
n,1 (ε), where Ẑn ∼ N(0, Σ̂n). Hansen’s (1996) weighted

bootstrap can also be applied to obtain the null limit distribution. �

We next examine the limit distribution of Dn,1 under H0,2. If γ∗ = 0, ξ0∗ and β∗ are not separately

identifiable. We therefore first assume that β∗ is unidentified, to obtain the null approximation, then reverse

the order by allowing ξ0∗ to be unidentified, and finally compare them under H0,2. Since β∗ (resp. ξ0∗)

is not identified, we optimize dn(·) with respect to β (resp. ξ0) in a later stage compared to for any other

parameter, to obtain

D(γ=0;β)
n,1 := − inf

β
inf
γ
n−1{dn(γ;β)− dn(0;β)} = sup

β

1

n

{C′0Q1U}2

C′0Q1C0
+ oP(1), (4)

D(γ=0;ξ0)
n,1 := − inf

ξ0
inf
γ
n−1{dn(γ; ξ0)− dn(0; ξ0)} = sup

ξ0

1

n

{C′0Q1U}2

C′0Q1C0
+ oP(1) (5)

by applying a second-order Taylor expansion, where C0 := [L1, . . . , Ln]′, Lt := log(Xt), and D(γ=0;β)
n,1

(resp. D(γ=0;ξ0)
n,1 ) denotes the DD test statistic designed to test H0,2 by treating β∗ (resp. ξ0∗) as an uniden-

tified parameter. Here, the right-hand side (RHS) parameters of (4) and (5) are asymptotically free of β and

ξ0, respectively, under our regularity conditions. Thus, the maximization with respect to β and ξ0 in (4) and

(5) respectively is an innocuous process relative to the null limit distribution. Furthermore, the same asymp-

totic approximations in (4) and (5) imply the uniquely determined limit distribution of Dn,1 irrespective of

the optimization order. We assume that D(γ=0)
n,1 denotes the DD test statistic testing H0,2 and contains the

null limit distribution in the following lemma:

Lemma 2. Given Assumptions 1, 2, 3, and H0,2, D(γ=0)
n,1 = {C′0Q1U}2/{nC′0Q1C0} + oP(1)

A∼ Z2
0 ,

where Z0
A∼ N(0, κ2

0) and κ2
0 := E[LtZ̃

′
t]J1Σ̃J1E[Z̃tLt]/E[LtZ̃

′
t]J1E[Z̃tLt]. �

Remarks.

(a) The DD test statistic null limit distribution is a noncentral chi-square distribution, unlike the limit

distribution under H0,1. This is mainly because the null limit approximations in (4) and (5) are free

of nuisance parameters β and ξ0, respectively.

(b) As for the case underH0,1, if M0 = Σ−1, then κ2
0 = 1, and so D(γ=0)

n,1
A∼ X 2

1 underH0,2.

(c) The weak limits of the DD test statistic under H0,1 and H0,2 are not independent. We examine their

joint distribution along with the weak limits underH0,3. �

Next, we examine the limit distribution of Dn,1 under H0,3 : γ∗ = 1. The process is similar to that

under H0,2. That is, if γ∗ = 1, ξ1∗ and β∗ are not separately identifiable. We therefore treat one of them as
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unidentified and identify the other one similarly to that under H0,2. If we treat β∗ or ξ1∗ as the unidentified

parameter, the corresponding null approximation is obtained as

D(γ=1;β)
n,1 := − inf

β
inf
γ∈Γ

n−1{dn(γ;β)− dn(1;β)} = sup
β

1

n

{C′1Q1U}2

C′1Q1C1
+ oP(1), (6)

D(γ=1;ξ1)
n,1 := − inf

ξ1
inf
γ
n−1{dn(γ; ξ1)− dn(1; ξ1)} = sup

ξ0

1

n

{C′1Q1U}2

C′1Q1C1
+ oP(1) (7)

by applying the second-order Taylor approximation to dn(·), where for j = 1, 2, ..., we let Cj := [Xj
tL1, . . . ,

Xj
nLn]. Here,D(γ=1;β)

n,1 (resp. D(γ=1;ξ1)
n,1 ) denotes the DD test statistic designed to testH0,3 obtained by treat-

ing β∗ (resp. ξ1∗) as the unidentified parameter, letting dn(·) be optimized with respect to β (resp. ξ1) in the

final stage. As earlier, the RHS parameters of (6) and (7) are asymptotically free of β and ξ1, respectively,

under our regularity conditions. Furthermore, the null approximation in (6) is identical to that in (7), imply-

ing that the limit distribution underH0,3 is identical to that underH0,2 irrespective of the optimization order.

We assume that D(γ=1)
n,1 denotes the DD test statistic and contains its null limit distribution in the following

lemma:

Lemma 3. Given Assumptions 1, 2, 3, and H0,3, D(γ=1)
n,1 = {C′1Q1U}2/{nC′1Q1C1} + oP(1)

A∼ Z2
1 ,

where Z1 ∼ N(0, κ2
1) and κ2

1 := E[CtZ̃
′
t]J1Σ̃J1E[Z̃tCt]/E[CtZ̃

′
t]J1E[Z̃tCt]. �

Finally, we derive the DD test statistic limit distribution underH0 using all the three null approximations

under H0,1, H0,2, and H0,3. Note that regular relationships exist among null approximations. For this

examination, we first assume that Nn(γ) := {X(γ)′Q1U}2 and Dn(γ) := nX(γ)′Q1X(γ). These are the

numerator and denominator of (3) respectively, and we examine the probability limits when γ converges to

0 or 1, to thereby remove the restriction to Γ by ε. Note that plimγ→0Nn(γ) = 0 and plimγ→0Dn(γ) = 0,

because γ → 0, implying that the probability limit of the ratio has to be obtained by the L’Hôpital rule.

We observe the same aspect when γ converges to 1. The following lemma contains the probability limits of

N
(j)
n := (∂j/∂γj)Nn(γ) and D(j)

n := (∂j/∂γj) Dn(γ) for j = 1 and 2:

Lemma 4. Given Assumptions 1 and 2,

(i) plimγ→0N
(1)
n (γ) = 0 and plimγ→0D

(1)
n (γ) = 0;

(ii) plimγ→1N
(1)
n (γ) = 0 and plimγ→1D

(1)
n (γ) = 0;

(iii) plimγ→0N
(2)
n (γ) = 2{C′0Q1U}2 and plimγ→0D

(2)
n (γ) = 2nC′0Q1C0; and

(iv) plimγ→1N
(2)
n (γ) = 2{C′1Q1U}2 and plimγ→1D

(2)
n (γ) = 2nC′1Q1C1. �
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By Lemma 4, the L’Hôpital rule has to be applied twice for the ratio probability limits. That is,

plimγ→0

Nn(γ)

Dn(γ)
=
{C′0Q1U}2

nC′0Q1C0
and plimγ→1

Nn(γ)

Dn(γ)
=
{C′1Q1U}2

nC′1Q1C1
, (8)

which are in fact the null limit approximations given in Lemmas 2 and 3. This also implies that

D(β=0)
n,1 := sup

γ∈Γ

1

n

{X(γ)′Q1U}2

X(γ)′Q1X(γ)
≥ max

[
{C′0Q1U}2

nC′0Q1C0
,
{C′1Q1U}2

nC′1Q1C1

]
= max

[
D(γ=0)
n,1 ,D(γ=1)

n,1

]
+ oP(1).

Therefore, the biggest GMM distance is obtained under H0,1. This implies that the DD test statistic limit

distribution under H0 has to be represented as a functional of Z1(·) derived under H0,1. We summarize the

key result in the following theorem:

Theorem 1. Given Assumptions 1, 2, 3, andH0, Dn,1 ⇒ supγ∈ΓZ2
1 (γ). �

2.4 Testing for Structural Nonlinearity

The DD test statistic has a consistent and nontrivial local power against general nonlinearity when valid

instrumental variables are employed, to lead to omnibus power. To examine this omnibus power, we assume

the possibly of no (β, γ) such that m(Xt) = βXγ
t with probability 1, and examine the omnibus power

property of the DD test statistic.

For this, we first derive the GMM distance limits under the null and alternative models and then examine

their difference. We examine the null distance at the limit, which we denote as d0 := plimn→∞n
−2dn(ω̃n),

and obtain it by the ergodic theorem:

d0 = min
ς

E[(Yt −V′tς)Z
′
t]M0E[(Yt −V′tς)Zt] = E[m(Xt)Z̃

′
t]J1E[Z̃tm(Xt)].

Here, if ς0 is the argument for d0, then ς0 = ς∗ + (E[VtZ̃
′
t]E[Z̃tV

′
t])
−1E[VtZ̃

′
t]E[Z̃tm(Xt)], implying that

the GMM estimator is asymptotically biased, as pointed out by Hall and Inoue (2003). We then derive the

alternative GMM distance at the limit: for each γ, if d(γ) := minς,β plimn→∞n
−2dn(ς, β, γ),

d(γ) = min
ς,β

E[(Yt −V′tς − βX
γ
t )Z′t]M0E[Zt(Yt −V′tς − βX

γ
t )] = E[m(Xt)Z̃

′
t]J1(γ)E[Z̃tm(Xt)],

where for each γ ∈ Γ, J1(γ) := I − E[Z̃tVt(γ)′](E[Vt(γ)Z̃′t]E[Z̃tVt(γ)′])−1E[Vt(γ)Z̃′t], and Vt(γ) :=

11



(V′t, X
γ
t ) = (1,W′

tX
γ
t ), so that

d0 − d(γ) =
{E[m(Xt)Z̃

′
t]J1E[Z̃tX

γ
t ]}2

E[Xγ
t Z̃′t]J1E[Z̃tX

γ
t ]

. (9)

Note that J1E[Z̃tX
γ
t ] is the projection error of E[Z̃tX

γ
t ] against E[VtZ̃

′
t], and J1 is an idempotent matrix,

so that {E[m(Xt)Z̃
′
t]J1E[Z̃tX

γ
t ]}2 > 0, unless E[m(Xt)Z̃t] and E[Xγ

t Z̃t] are sub-vectors of E[VtZ̃t].

Therefore, for each γ, d0 − d(γ) > 0. Here, even for γ = 0 or 1, d0 − d(γ) > 0. If γ = 0 or 1, then

J1E[Z̃tX
γ
t ] = 0, because E[Xγ

t Z̃t] is a sub-vector of E[VtZ̃t]. Nevertheless, the RHS of (9) is obtained

by the L’Hôpital rule if γ = 0 or 1, because E[Xγ
t Z̃t] is present in both the numerator and denominator.

Therefore,

lim
γ→0

d0 − d(γ) =
{E[m(Xt)Z̃

′
t]J1E[Z̃tLt]}2

E[LtZ̃′t]J1E[Z̃tLt]
and lim

γ→1
d0 − d(γ) =

{E[m(Xt)Z̃
′
t]J1E[Z̃tCt]}2

E[CtZ̃′t]J1E[Z̃tCt]
.

Note that the two limits are still strictly positive.

The DD test statistic gains power from the difference between d0 and d(·). Note that n−1Dn,1 =

d0 − infγ∈Γ d(γ) + oP(1) = supγ∈Γ µ
2
1(γ) + oP(1), where

µ1(·) :=
E[X

(·)
t Z̃′t]J1E[Z̃tm(Xt)]

{E[X
(·)
t Z̃′t]J1E[Z̃tX

(·)
t ]}1/2

.

Indeed, supγ∈Γ µ
2
1(γ) is strictly positive, to obtain a consistent power for the DD test statistic. We include

this result in the following theorem:

Theorem 2. Given Assumptions 1, 2, and 3,

(i) if J1E[Z̃tm(Xt)] 6= 0 and there is no (β, γ) such that m(Xt) = βXγ
t with probability 1, then for

some γ̃ ∈ Γ, d(γ̃) ∈ (0, d0) and n−1Dn,1 = d0 − d(γ̃) + oP(1); and

(ii) if for the measurable function s(·), m(Xt) = n−1/2s(Xt) with probability 1, J1E[Z̃ts(Xt)] 6= 0

and there is no (β, γ) such that s(Xt) = βXγ
t with probability 1, then Dn,1 ⇒ supγ∈Γ{Z1(γ) + ν1(γ)}2,

where ν1(·) := E[X
(·)
t Z̃t]J1E[Z̃ts(Xt)]/σ1(·). �

Remarks.

(a) For consistent power, we need to select valid instrumental variables for J1E[Z̃tm(Xt)] 6= 0, as

presumed for the proper application of the DD test statistic.

(b) The DD test statistic draws consistent power from a factor different from that for the J-test statistic.

The J-test statistic directly tests whether or not E[Z̃tm(Xt)] = 0 and asymptotically rejects the linear
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structure condition if the instrumental variables are not valid. In contrast, the DD test statistic draws

its power from the correlation between Z̃′tJ1E[Z̃tX
γ
t ] and Z̃′tJ1E[Z̃tm(Xt)]; this implies that the J-

and DD test statistics supplement each other. If the J-test statistic rejects the null but the DD test

statistic does not, the rejection is highly related to E[Z̃tm(Xt)] 6= 0.

(c) From Theorem 2(i), the DD test statistic has a consistent power even when the power transform

misspecifies the functional form of m(·). If the power transformation correctly specifies the func-

tional form of m(·), the power obtained consistently is trivial. That is, if for some γ∗ ∈ Γ \ {0, 1},

m(Xt) = β∗X
γ∗
t , then n−1Dn,1 = β2

∗E[Xγ∗
t Z̃′t]J1E[Z̃tX

γ∗
t ] + oP(1); this is strictly positive at the

limit, implying that Dn,1 has nontrivial asymptotic power.

(d) For an intuitive proof of Theorem 2(i), assume that M0 = E[ZtZ
′
t]
−1. Now, we have µ2

1(γ) =

corr[Qt, Ut(γ)]2var[Qt], where Qt := Z̃′tJ1E[Z̃tm(Xt)] and Ut(γ) := Z̃′tJ1E[Z̃tX
γ
t ], and so the DD

test statistic does not have an asymptotic power if corr[Qt, Ut(·)]2 ≡ 0. Nevertheless, corr[Qt, Ut(·)]2

cannot be zero, because E[Z̃tX
γ
t ] = 0 implies that E[Z̃t|Xt] = 0, since E[Z̃tX

γ
t ] = ∇τE[exp(γ log

(Xt) + τ ′Z̃t)]|τ=0 and E[exp(γ log(Xt) + τ ′Z̃t)] is a moment generating function of (log(Xt), Z̃
′
t)
′.

Here, if E[Z̃t|Xt] = 0, then E[Z̃tm(Xt)] = 0 by the law of iterated expectation, since it is contra-

dictory to the condition that J1E[Z̃tm(Xt)] 6= 0, leading to a nonzero correlation coefficient between

Qt and Ut(·).

(e) From Theorem 2(ii), the DD test statistic has a nontrivial power against a local alternative converging

to zero at the rate of n−1/2. Note that the asymptotic local power can be gained by shifting the locality

parameter of Z1(·) by ν1(·), which is different from 0, as implied by Theorem 2(i). �

3 Extension to Testing the Polynomial Model Hypothesis

3.1 Motivation and Model

In this section, we extend the linear structure testing condition to testing a polynomial structure. Here, a

sequential testing procedure can be used to estimate a nonlinear polynomial structure consistently.

The main aim of sequential testing is to estimate a parsimonious structural model. Note that semi- and

nonparametric sieve estimations exploit as many sieve bases as the sample size allows and lead to possibly

unnecessary estimation errors for the estimator. A sequential testing procedure is a machinery process to

avoid unnecessary estimation error.

We believe that the empirical researcher would approximate the unknown functional form of m(·) using
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the polynomial model specified as

Mq :=
{
mt,q(ω

(q)) := Yt −X′t,qξ
(q) −D′tη − βX

γ
t : ω(q) ∈ Ω(q) ⊂ Rk+q+3

}
,

where ω(q) := (ξ(q)′,η′, β, γ)′, Xt,q := (1, Xt, X
2
t , . . . , X

q
t )′, ξ(q) := (ξ0, ξ1, . . . , ξq)

′, and k and q ∈ N.

As earlier, we assume that for someω(q)
∗ ∈ Ω(q), Yt = X′t,qξ

(q)
∗ +D′tη∗+m(Xt)+Ut such that E[ZtUt] = 0,

and Xt and Dt are endogenous and exogenous variables respectively. Note that this structure generalizes

the linear structure in Section 2. If q = 1, thenMq is identical toM1, whereas the structural equation is

possibly nonlinear for q > 1.

The motivation of Mq comes from estimating a reduced-form equation through sieve approximation.

Each polynomial term forms a sieve basis, with the unknown reduced-form equation well known to be

approximated arbitrarily well through a polynomial function by increasing its degree. Another standard

method is to estimate the unknown sieve estimation degree using information criteria (e.g., Chen and Liu,

2014). Cho and Phillips (2018) apply the sequential testing procedure based on QLR test statistic to the

polynomial model and find that it can consistently estimate the nonlinear reduced-form equation.

We apply the sequential testing procedure in Cho and Phillips (2018) to the nonlinear structure using the

DD test statistic. Since the structural form of m(·) is unknown, the sieve estimation motivates to approxi-

matem(·) using a higher-degree polynomial function. If the DD test statistic does not reject the high-degree

polynomial model, the sequential testing procedure would take it as m(·) or its close approximation, en-

abling the researcher to develop an economic theory consistent with the empirical estimate obtained using

the sequential testing procedure.

Another motivation to use sequential testing stems from the moment selection criterion (MSC) devel-

oped by Andrews (1999). We discuss this motivation by relating the sequential testing procedure to specifi-

cally the Bayesian-type MSC among others, which is defined asBCn,q := J̄n,q−(m−k−q−1) log(n)/n,

where J̄n,q := n−1Jn,q and Jn,q is the J-test statistic designed to test the qth-degree polynomial structural

equation such that q = 1, 2, . . . , q̄ <∞. The MSC selects the polynomial model with the smallest value of

BCn,q for q = 1, 2, . . . , q̄. If q∗ < q̄, Andrews (1999) shows that the Bayesian-type MSC asymptotically

selects the qth
∗ -degree polynomial model. The same result can be obtained via

∆BCn,q := BCn,q+1 −BCn,q = J̄n,q+1 − J̄n,q +
1

n
log(n)

under some regularity conditions. If q ≥ q∗, plimn→∞∆BCn,q = 0, because the probability limits of

J̄n,q+1 and J̄n,q are identical since the qth-degree polynomial model is nested in a higher-degree polynomial
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model. Thus, if limn→∞ P(∆BCn,q < 0) = 1 for every q < q∗, then q∗ must be the smallest q among the

qs, such that plimn→∞∆BCn,q is zero. From this feature, we can consistently estimate q∗ by sequentially

testing whether plimn→∞∆BCn,q is less than or equal to 0 from q = 1 to q = q̄ until we cannot reject the

hypothesis that plimn→∞∆BCn,q = 0.

We design our sequential testing procedure to ensure the undergoing supposition. The procedure us-

ing ∆BCn,q would work properly if limn→∞ P(∆BCn,q < 0) < 1 holds for every q < q∗. Otherwise,

the procedure would fail to estimate q∗ consistently. We thus avoid this fallacy by replacing ∆BCn,q

with the DD test statistic. The DD test statistic has omnibus power, implying that for every q < q∗,

limn→∞ P(Dn,q < 0) < 1, whereDn,q is the DD test statistic testing the q-th degree polynomial hypothesis,

as formally defined below. Therefore, the fallacy probability becomes negligible as n increases.

We discuss this approach more specifically below. For this, we first examine the qth-degree polynomial

model testing and then apply the sequential testing procedure to estimate the polynomial structure.

3.2 Inference Using the DD Test Statistic

We assume that the empirical researcher is testing whether the qth-degree polynomial model is adequate or

not for the nonlinear structure by letting the null model be the qth-degree polynomial function.

The testing procedure usingMq is similar to that usingM1. Note thatMq can be transformed into the

qth-degree polynomial model in q + 2 different ways, as with the linear model:

H′0,1 : β∗ = 0, H′0,2 : γ∗ = 0, · · · , H0,q+1 : γ∗ = q − 1, or H′0,q+2 : γ∗ = q.

Since any of these hypotheses would generate the qth-degree polynomial model, we treat them as the sub-

hypotheses of H′0 := ∪q+2
s=1H′0,s, which is now the null hypothesis of this section. Each sub-hypothesis

has its own identification problem: γ∗ is not identified under H′0,1; for s = 0, 1, . . . , q, β∗ and ξs,∗ are not

separately identified underH′0,s+2. This forms a multifold identification problem that generalizes the trifold

identification problem in Section 2.3.

We then use the DD test statistic to overcome the multifold identification problem. For this, we define

the DD test statistic as

Dn,q := n−1{dn(ω̃(q)
n )− dn(ω̂(q)

n )},

where ω̃(q)
n := arg minω(q)∈Ω(q) dn(ω(q)), subject to β = 0, ω̂(q)

n := arg minω(q)∈Ω(q) dn(ω(q)), and

dn(ω(q)) := (Y − βX(γ)−Vqς
(q))ZMnZ

′(Y − βX(γ)−Vqς
(q)).
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Here, we assume that Vq := [V′1,q, . . . ,V
′
n,q]
′, Vt,q := (1,W′

t,q)
′ := (1,X′t,q,D

′
t)
′, and ς(q) := (ξ(q)′,η′)′,

so that ω(q) = (ς(q)′, β, γ)′. Note that if q = 1, Vq and Vt,q would be identical to V and Vt in Section 2.3,

respectively.

We can obtain the null limit distribution of the DD test statistic as in the linear model case. For this, we

extend the earlier model and moment conditions, to have the following assumption:

Assumption 4. (i) The structural relationship between Yt and Wt is specified asMq := {mt,q(ω
(q)) :=

Yt −X′t,qξ
(q) −D′tη − βX

γ
t : ω(q) ∈ Ω(q) ⊂ Rk+q+3}, where Ω(q) := Ξ(q) ×∆ × B × Γ(q) such that

Ξ(q), ∆, B, and Γ(q) := [γ, γ] are convex and compact in Rq, Rk+1, R, and R, respectively; 0, 1, . . ., and

q are interior elements of Γ(q);

(ii) for the measurable functions m(·) and (ξ0∗, δ
(q)′
∗ )′ ∈ R1+k+q, Yt = ξ0∗ + W′

t,qδ
(q)
∗ +m(Xt) + Ut,

where Wt,q := (1,X′t,q,D
′
t)
′ and Xt,q := (1, Xt, X

2
t , . . . , X

q
t )′;

(iii) E[Vt,qZ
′
t] and V′qZ have full row ranks uniformly in n, where Vt,q = (1,W′

t,q)
′ and Vq :=

[V′1,q, . . . ,V
′
n,q]
′;

(iv) an SSE sequence {Mt} exists such that E[M2
t ] <∞ and supγ∈Γ(q) |Xγ

t | ≤Mt; and

(v) E[X4q
t ] <∞ and E[L4

t ] <∞. �

Remarks.

(a) The parameter space condition in Assumption 2 is modified to include 0, 1, . . . , q as interior elements

of Γ(q).

(b) Note that if q = 1, Assumption 4 would imply Assumptions 2 and 3. �

Under the above conditions, we can obtain the properties of the DD test statistic as in linearity testing.

For this, we follow the approach of the linear model case as follows. Assume that

D(β=0)
n,q := −infγ∈Γ(q)(ε)infβn

−1{dn(β; γ)− dn(0; γ)} = sup
γ∈Γ(q)

1

n

{X(γ)′QqU}2

X(γ)′QqX(γ)
,

to obtain the null limit distribution of the DD test statistic under H′0,1, where dn(β; γ) := minς(q) dn(ω(q))

and Qq := Z̈{I− Z̈′Vq(V
′
qZ̈Z̈′V′q)

−1V′qZ̈}Z̈′. Next, as in the linear case, for each s = 0, 1, . . . , q, assume

that

D(γ=s)
n,q := max[D(γ=s;ξs)

n,q ,D(γ=s;β)
n,q ],

to obtain the null limit distribution of the DD test statistic underH0,2+s, where

D(γ=s;β)
n,q := −infβinfγn

−1{dn(γ;β)−dn(1;β)} and D(γ=s;ξs)
n,q := −infξs infγn

−1{dn(γ; ξs)−dn(1; ξs)}
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with dn(γ;β) := minς(q) dn(ω(q)), dn(γ; ξs) := min
ξ

(q)
−s ,η,β

dn(ω(q)), and ξ(q)
−s := (ξ0, . . . , ξs−1, ξs+1, . . . ,

ξq)
′. We obtain all these statistics by optimizing the GMM distance function with regard to the unidentified

parameters under each sub-null hypothesis H′0,2+s in the final stage and the null limit approximation of the

DD test statistic as their maximum, as in the linear model case. That is, if we assume that

Dn,q := max[D(β=0)
n,q ,D(γ=0)

n,q ,D(γ=1)
n,q , · · · ,D(γ=q)

n,q ],

then the DD test statistic would be asymptotically equivalent to Dn,q underH′0 by analogy.

We can also obtain the omnibus power property of the DD test statistic as in the linear model case. For

the desired properties, we assume that for the measurable functionm(·), Yt = X′t,qξ
(q)
∗ +D′tη∗+m(Xt)+Ut

such that E[UtZt] = 0, with possibly no (β, γ), such that m(Xt) = βXγ
t with probability 1. Given this

assumption, we can obtain plimn→∞n
−2{dn(ω̃

(q)
n ) − dn(ς̂

(q)
n (γ), γ)} = supγ∈Γ(q) µ2

q(γ) by applying the

ergodic theorem, where ς̂(q)
n (γ) := arg minς dn(ς, γ), ς(q) := (ξ(q)′,η′)′, and for each γ ∈ Γ(q),

µq(γ) :=
E[m(Xt)Z̃

′
t]JqE[Z̃tX

γ
t ]

{E[Xγ
t Z̃′t]JqE[Z̃tX

γ
t ]}1/2

.

Here, Jq := I − E[Z̃tV
′
t,q](E[Vt,qZ̃

′
t] E[Z̃tV

′
t,q])

−1E[Vt,qZ̃
′
t]. From this, if supγ∈Γ(q) µ2

q(γ) > 0, the DD

test statistic will have consistent power.

We collect these null and alternative limit properties, to obtain the following corollary:

Corollary 1. Given Assumption 1 and 4,

(i) Dn,q ⇒ supγ∈Γ(q) Z2
q (γ) under H′0, where for each γ ∈ Γ(q)(ε), Zq(γ) ∼ N(0, ρq(γ, γ)), and for

each pair (γ, γ′), E[Zq(γ)Zq(γ′)] = ρq(γ, γ
′) := κq(γ, γ

′)/{σ2
q (γ)σ2

q (γ
′)}1/2, κq(γ, γ′) := E[Xγ

t Z̃′t]Jq

Σ̃JqE[Z̃tX
γ′

t ], and σ2
q (γ) := E[Xγ

t Z̃′t]JqE[Z̃tX
γ
t ];

(ii) if JqE[Z̃tm(Xt)] 6= 0, and possibly there is no (β, γ) such that m(Xt) = βXγ
t with probability 1,

then for some γ̃ ∈ Γ(q), n−1Dn,q = µ2
q(γ̃) + oP(1) such that µ2

q(γ̃) > 0; and

(iii) if for a measurable function s(·), m(Xt) = n−1/2s(Xt) with probability 1, J1E[Z̃ts(Xt)] 6= 0, and

possibly there is no (β, γ) such that s(Xt) = βXγ
t with probability 1, then Dn,q ⇒ supγ∈Γ(q){Zq(γ) +

νq(γ)}2, where νq(·) := E[X
(·)
t Z̃t]JqE[Z̃ts(Xt)]/σ1(·). �

Remarks.

(a) Corollary 1 generalizes the consequences in Theorems 1 and 2 to the polynomial model case; we can

obtain its proof by iterating the proofs of Theorems 1 and 2. We summarize the proof as follows:
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first, for each ε > 0, it follows that D(β=0)
n,q (ε) ⇒ supγ∈Γ(q)(ε)Z2

q (γ) by extending Lemma 1, where

Γ(q)(ε) := Γ(q) \ ∪qj=0(j − ε, j + ε); second, for each s = 0, 1, . . . , q, it follows that D(γ=s)
n,q =

{C′sQqU}2/{nC′sQqCs} + oP(1) under H′0,s+2 : γ∗ = s; finally, if we assume that Nn,q(γ) :=

{X(γ)′QqU}2 and Dn,q(γ) := nX(γ)′QqX(γ), then for each s = 0, 1, 2, . . . , q,

plimγ→s
Nn,q(γ)

Dn,q(γ)
=

1

n

{C′sQqU}2

C′sQqCs
= D(γ=s)

n,q + oP(1);

this implies that the GMM distance obtained under H′0,1 becomes larger than those obtained under

H′0,s with s = 2, 3, . . . , q + 2. Thus, Dn,q = D(β=0)
n,q + oP(1) under H′0, as in the linear model case.

Since this proof slightly generalizes that already shown for the linearity condition, we do not repeat

the essentially same proof in the appendix.

(b) Note that the covariance kernel of Zq(·) is different from that of ρ1(·, ·) in Lemma 1. This depends

on both the model and DGP conditions. For the same DGP, different polynomial models provide dif-

ferent covariance kernels. Likewise, for the same model, different DGPs provide different covariance

kernels. Furthermore, the null limit distribution of the DD test statistic depends on Γ(q). We obtain

different null limit distributions with different Γ(q).

(c) Despite the different properties of Zq(·) and Z1(·), the asymptotic critical values can be obtained

similarly toZ1(·). Under mild regularity conditions, we can estimate πq(·) := JqE[Z̃tX
(·)
t ]/σ2

q (γ)1/2

consistently by its sample analog, assuming that Z̃q(·) := πq(·)G simulates supγ∈Γ(q) Z̃2
q (γ), where

G ∼ N(0, Σ̃) as before.

(d) Corollaries 1(ii and iii) extend the properties of Theorem 2 under the fixed and local alternative hy-

potheses, respectively. �

3.3 Sequentially Estimating Correct Polynomial Model

Corollary 1 provides a basis for a system of sequential testing using polynomial models. By applying the

sequential testing procedure to Corollary 1, we can estimate the unknown degree of the polynomial model

consistently. For this, we assume that q̄ is the maximum degree of the polynomial models considered, and

I(q̄) := {1, 2, . . . , q̄} is a set of model indices, so that q̄ number of models are considered here in total. We

also assume that Γ(q̄) includes the elements of I(q̄) as interior elements and Γ(q̄) is identical to Γ(q) inMq

for each q ∈ I(q̄). We further assume that q∗ is the minimum degree polynomial model correctly specified.

Note that if the qth-degree polynomial model is correctly specified, every polynomial model with a degree

higher than q is also correctly specified. The goal of the sequential testing procedure is to estimate q∗ to
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derive the most parsimonious and correctly specified model. If q∗ /∈ I(q̄), every model is misspecified.

Our sequential testing procedure is performed in the following order:

• Step 1: We compute Dn,1 usingM1 and compare it with the critical value cv1(αn) in Corollary 1 at

the level of αn. If the Dn,1 is less than or equal to cv1(αn), we stop this sequential testing procedure

and conclude that the structural relationship is linear. Otherwise, we move to the next step.

• Step 2: For q = 2, 3, . . . , q̄, compute Dn,q and iterate the same testing procedure using the critical

value cvq(αn) implied by the same level of significance αn as in Step 1 and the null limit distribution

in Corollary 1. If there is any q ∈ I(q̄) such that Dn,q is less than or equal to cvq(αn), we let the

degree estimator be q̂n := min{q ∈ I(q̄) : Dn,q ≤ cvq(αn)}.

• Step 3: If there is no q ∈ I(q̄) such that Dn,q is less than or equal to cvq(αn), we conclude that

M(q̄) := {Mq : q ∈ I(q̄)} is not adequate to capture the structural nonlinearity between Yt and Xt.

Here, the level of significance αn is set to depend on the sample size. The degree estimation error due to

the sequential testing procedure would not vanish if it were fixed at a certain level. Therefore, we allow it

to converge to zero gradually as the sample size increases. Thus, the degree estimation error vanishes as

n increases (e.g., Cho and Phillips, 2018). Theorem 3 discusses how to choose αn in order to estimate q∗

consistently:

Theorem 3. Given that for each q ∈ I(q̄), Assumptions 1 and 4 hold with Γ(q) being Γ(q̄),

(i) if for each α ∈ (0, 1), αn = α and q∗ ∈ I(q̄), then for each ε > 0, limn→∞ P(|q̂n − q∗| > ε) = α;

(ii) if for each q ∈ I(q̄), (a) P(supγ∈Γ(q̄) Zq(γ) ≥ aq) ≤ 1/2 for some aq, (b) limn→∞ αn = 0, and (c)

limn→∞ log(αn)/n = 0, then for any ε > 0, limn→∞ P(|q̂n − q∗| > ε) = 0. �

Remarks.

(a) From Theorem 3(i), if αn does not converge to zero as n tends to infinity, the degree estimator does

not vanish to zero. Theorem 3(ii) provides the conditions for αn to converge to zero so that the degree

estimation error converges to zero. Note that the possibility of estimating a degree less than q∗ gets

smaller as n increases, because the DD test statistic has omnibus power for q < q∗.

(b) The regularity conditions in Theorem 3(ii) are weaker than those in theorem 2 of Cho and Phillips

(2018), because they presume a locally stationary Gaussian process with covariance structure dom-

inated by that of the standardized Zq(·). However, Theorem 3(ii) does not assume such a Gaussian

process.
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(c) Since the proof of Theorem 3(i) is straightforward from Corollary 1, we do not include it in the

appendix. Theorem 3(ii) can be proved by applying Borel’s theorem on the upper probability bound

of an extreme Gaussian stochastic process (e.g., Piterbarg, 1996, p. 13). �

4 Simulation

In this section, we use simulation to examine the DD test statistic and compare its numerical performance

with those of the J-test statistic and MSC.

We consider a simple DGP structure for our simulation. First, we assume that (Dt, Gt,W
′
t)
′ ∼ IID

N(04, I4), where Wt ∈ R2 andGt ∈ R. Second, we assume that Ut := Gt andXt := exp(1
2(W′

tι2 +Gt)).

Note that Xt is positively valued with probability 1. Third, we consider

Yt := 1 +Dt +Xt +X2
t + Ut,

so that Yt is quadratically associated with Xt, and Xt and Ut are correlated through Gt. Finally, we propose

two plans for the instrumental variables. We first let Zt be (1, Dt,W
′
t,W

2
1,t,W

2
2,t,W

3
1,t)
′ ∈ R7, where Wj,t

denotes the jth-row element of Wt, and then assume that Zt := (1, Dt,W
′
t,W

2
1,t,W

2
2,t,W

3
1,t,W

3
2,t)
′ ∈ R8,

to estimate the unknown parameters using GMM estimation. We call the two instrumental variable sets as

Sets A and B respectively, with the different sets employed to examine how the DD test statistic responds to

the different instrumental variables.

The main goal of an empirical researcher is to estimate the structural relationship between Yt and

(1, Xt, Dt). We assume that the researcher specifies the following set of models without having an idea

of the true structure between Yt and Xt: for each q ∈ I(3) := {1, 2, 3},

M′q :=
{
mt,q(ω

(q)) := Yt − ξ0 −Xtξ1 − . . .−Xq
t ξq −Dtη − βXγ

t : ω(q) ∈ Ω(q) ⊂ R4+q
}
,

where ω(q) := (ξ0, . . . , ξq, η, β, γ)′, and Ω(q) is the parameter space of ω(q). In particular, we assume that

the parameter space of γ is Γ = [−0.25, 3.50], so that the third-degree polynomial model is nested inM′q
for every q. The other parameter spaces are not restricted. Given this model assumption, we also assume

that the researcher estimates the unknown parameters using the GMM estimation method with weighting

matrix Mn = (n−1Z′Z)−1. Since Ut is independent of Zt, this weighting matrix can reduce the size

distortion of the J-test statistic without resorting to the bootstrap methodology (e.g., Hall and Horowitz,

1996). Note thatM′2 andM′3 are correctly specified models, whereM′2 is the most parsimonious model
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among correctly specified ones. The empirical researcher’s main goal is therefore achieved when estimating

q∗ = 2 consistently.

Given the DGP and model assumptions, we perform our simulations in the following order.

(a) We compute the DD test statistic for each model and test whether the structural model is correctly

specified. Here, we estimate the covariance matrix Σ̃ in Corollary 1 by σ̃2
q,n(n−1Z′Z), where σ̃2

q,n :=

n−1Ũ(q)′Ũ(q) and Ũ(q) := Y −Vq ς̃
(q)
n . Note that ω̃(q)

n ≡ (ς̃
(q)′
n , 0, γ)′. We fix the significant level

at 10%, 5%, and 1%, and examine how the DD test statistic size distortion evolves as the sample size

increases from 100 to 1,000 by 100 observations.

(b) We also perform sequential testing using the J-test statistic. We compute the J-test statistics using the

following models. For each q ∈ I(3),

M′′q :=
{
mt,q(ω̄

(q)) := Yt − ξ0 −Xtξ1 − . . .−Xq
t ξq −Dtη : ω̄(q) ∈ Ω̄(q) ⊂ R2+q

}
,

where ω̄(q) := (ξ0, ξ1, . . . , ξq, η) and Ω̄(q) is the parameter space of ω̄(q). Note thatM′′q is the qth-

degree polynomial model with respect to Xt without having its power transform, obviating the identi-

fication problem. Assume that Jn,q denotes the J-test statistic that can test the qth-degree polynomial

model.

(c) We allow the significance level to depend on the sample size so that the estimation error degree

becomes zero as the sample size increases. To apply Theorem 3(ii), we first assume that αn = 1/n1/2,

1/n3/4, and 1/n, and examine how the estimation error is formed using simulation. Note that the

significance levels converge to zero by all the level plans, with the convergence rate of αn = 1/n faster

than the others. In addition to the DD test statistic, we apply the J-test statistic to the sequential testing

procedure. We call these sequential testing procedures the DD- and J-sequential testing procedures,

respectively.

(d) Finally, we apply the MSCs in Andrews (1999). We examine three MSCs, the Akaike-type model

MSC, Bayesian-type MSC, and Hannan-Quinn-type MSC; specifically, they are

AIC-MSC := J̄n,q − 2(m− q − 2)/n, Bayesian-MSC := J̄n,q − log(n)(m− q − 2)/n,

Hannan-Quinn-MSC := J̄n,q − κ log(log(n))(m− q − 2)/n,

respectively, where J̄n,q := n−1Jn,q, m is the number of instrumental variables; we assume that κ is

2.01 following Andrews (1999). The model that performs best is the one with the smallest MSC. �
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We iteratively perform this four-step simulation for the data sets formed by Sets A and B and report the

simulation results in Tables 1 and 2. Table 1 presents the results obtained through the first two steps, and

Table 2 presents the results obtained through the next two steps. Specifically, they report the precision rates

of the methods. For example, if q̂n,i denotes the degree estimated by the ith- simulation, the precision rate

is computed using r−1
∑r

i=1 I(q̂n,i = q∗)× 100, where r is the number of simulations repeated and I(·) is

the indicator function.

The simulation results reported in Table 1 are summarized as follows:

(a) When the significance level is fixed irrespective of n, the degrees estimated using the DD- and J-

sequential testing procedures yield the results as desired by Theorem 3(i): if the significance level is

fixed at α, the estimated precision rate would converge to (1 − α) × 100 for q = 2 as n increases.

For example, when α = 0.10, the DD- and J-sequential testing procedures give precision rates close

to 90% for q = 2.

(b) When the significance level is relatively high, the J-sequential testing procedure gives more precise

estimates than the procedure using the DD test statistic. If the significance level is low, the DD-

sequential testing procedure would yield more precise estimates.

(c) The J-sequential testing procedure yields a wider distribution for q̂n than the procedure using the DD

test statistic. Note that for every sample size n, q̂n = 1 or 4 is more often observed than q̂n = 3 for the

J-sequential testing procedure unless q̂n = 2. However, q̂n = 3 is more often observed than q̂n = 1

or 4 for the DD-sequential testing procedure, implying that the estimated degree distribution is more

concentrated around q∗ = 2 for the DD-sequential testing procedure. �

Table 2 reports the precision rate of each estimation method by letting αn = n−1/2, n−3/4, and n−1.

Table 2 is summarized as follows:

(a) As n increases, the estimation errors decrease when applying the DD- and J-sequential testing proce-

dures. Note that the difference between q̂n and q∗ also decreases under both methods. Furthermore,

for any level plan, smaller estimation errors are observed for the data sets with larger n, and so the

degree estimation errors based on αn = n−1 are smaller than the others.

(b) As n increases, the estimation errors when using MSCs also decrease, with the Bayesian MSC esti-

mating q∗ more efficiently than the other two MSCs.

(c) Overall, the DD-sequential testing procedure performs better than the MSCs and the J-sequential

testing procedure. For each sample size, we indicate the method performing best in boldface font.

Note that the DD-sequential testing procedure overall dominates the other methods.
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(d) As regards the DD-sequential testing procedure, no level plan uniformly dominates the other plans.

If n is small, αn = n−1/2 performs better than the others; if n is moderately large, αn = n−3/4

becomes dominant; and if n is sufficiently large, αn = n−1 becomes dominant over the other plans.

This implies that the level plan itself needs to be carefully selected so as to depend on n.

(e) For a small n, the DD-sequential testing procedure performs better than the J-sequential testing pro-

cedure, but this is not true for every level plan and sample size. For example, for αn = n−1/2, if

n increases, the J-sequential testing procedure will perform better than the procedure using the DD

test statistic. In other words, the estimation error when using the J-sequential testing procedure will

become zero more quickly than when using the DD test statistic procedure. This also implies that the

degree estimation error when using the J-sequential testing procedure is better controlled than when

using the DD-sequential testing procedure for large n. However, for αn = n−3/4 or n−1, this dom-

inance relationship is reversed and observed for all ns, and so the estimation error when using the

DD-sequential testing procedure shows more precise rates for all ns.

(f) As regards the MSC, all the MSCs are always dominated by the DD-sequential testing procedure with

αn = n−3/4. �

These simulations prove that we can efficiently estimate the most parsimonious and correctly specified

polynomial structures using the DD-sequential testing procedure.

5 Empirical Application

In the literature on human capital, identifying the return to education has been a popular research topic.

Card (1995) examines the monetary return to education using college proximity as an instrument variable,

constructed from the Young Men Cohort of the National Longitudinal Survey (NLS). Specifically, his em-

pirical analysis shows that individual educational variations are created by proximity to college, and uses

this variation to estimate the structural earnings equations, to find the instrumental variable estimates about

50∼60% higher than those measured by ordinary least squares (OLS) estimation. This distinct result is

empirically important from the viewpoint of Griliches (1977) and Willis (1986), who pointed out the possi-

bility of significantly large omitted variable bias when estimating the returns of education due to individual

unobservable abilities.

Note that all of the models estimated by Card (1995) are linear, and the estimates might suffer from

model misspecification bias. Although the instrumental variables used are orthogonal to the unobservable

ability variables, the estimates can suffer from the endogeneity arising from the omitted variable bias when
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the education effect is nonlinear. The power direction of the J-test statistic differs from that of the DD test

statistic and the linear structure assumption may not be valid for their data sets.

We therefore conduct model misspecification testing separately using the DD test statistic. We design

this investigation to affirm or refute the original inference of Card (1995) and further use it as an empirical

illustration of the DD-sequential testing procedure.

The structural model posited by Card (1995) has a standard model structure to enable GMM estimation.

The basic linear model is given as

log(waget) = α+ β1educt + X′tη + Ut, (10)

where log(waget) is the log wage, educt is the schooling years, Xt is the set of observable controls, and

Ut is the structural error. Because educt and Ut can be correlated, the OLS estimation may be biased.

To remedy the endogeneity problem, Card (1995) employed the proximity variables to four-year private or

public colleges as instrumental variables for schooling years, as mentioned above. He further lets the set of

controls to include family structure, parental education, residential location dummies, region and urban/rural

indicators, age, and race dummies. Here, the family structure provides the dummy variables indicating

whether the individual lived with a single mother or both parents at age 14. For parental education level, the

dummy variable is constructed to indicate whether both parents had under 12 years of schooling.

We extend Card’s (1995) structural models to polynomial structural models. In addition to his origi-

nal instrumental variables, we include other instrumental variables since multiple instrumental variables are

required for DD-sequential testing. We generate the other instrumental variables by multiplying the prox-

imity variables to four-year private or public college or to family structure. That is, we let the instrumental

variables be the two original proximity variables and their interactions, with the dummy variable indicating

whether the individual was from a single-mother family. These new instrumental variables arise because

the geographical variations in college proximity have heterogeneous effects over individuals with different

family characteristics. The dependent variable is the log wage in 1976 or 1978.

In our data analysis, we first verify whether the employed instrumental variables are weak. Following

Andrews, Stock, and Sun (2019), we compute the effective first-stage F-test statistics, as reported in Table

3. Note that they are close to 10, in accordance with Staiger and Stock’s (1997) rule of thumb. From this,

we conclude that the current estimations do not significantly suffer from the weak instrumental variable

problem.

We next apply the DD- and J-sequential testing procedures to the linear model and data adopting the
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MSC approach. The testing results are reported in Table 3. For the DD-sequential testing procedure, we

assume that Γ = [0.5, 3.5], and transform the model in (10) intoMq with q ∈ {1, 2}, so that the DD test

statistics can be computed for each q. Next, using the null limit distribution in Corollary 1, we compute

the DD test statistics p-values and report them in parentheses. For this, we obtain the null weak limit

in Corollary 1 through 500 independent simulation experiments. The figures in parentheses denoting the

percentiles for simulated weak limits are greater than the respective DD test statistics figures. We further

estimate the J-test statistics p-values through a similar simulation. The desired null limit distributions are

obtained by estimating the weighting matrix using White’s (1980) heteroskedasticity consistent covariance

matrix estimator, and the estimated p-values are reported in parentheses below the J-test statistics. Finally,

we apply Andrew’s (1999) Bayesian MSC to the same data and models, using the optimal weighting matrix

recommended by Andrews (1999). We report the degrees selected by these three methods in boldface.

Both the DD- and J- sequential testing procedures estimate the same polynomial degree model. That

is, the log wage with respect to education years is structurally linear for both the 1976 and 1978 data sets.

Thus, the linear models specified by Card (1995) are correct, as further affirmed by the Bayesian MSC. The

linear models with respect to education minimize the Bayesian MSC values for both data sets.

We finally report the model coefficients estimated using the OLS and TSLS methods in Table 4. The

TSLS estimations are obtained using the instrumental variables employed for the DD sequential testing

procedure. Notwithstanding the different instrumental variables, the estimates obtained are more or less

similar to what Card (1995) reported, although the estimates in Table 4 are slightly higher than those given

by Card (1995). Therefore, we draw the same conclusion as Card (1995): the returns to education are

distinctively higher than those measured by OLS estimation.

6 Concluding Remarks

In this study, we provide an econometric method to estimate a correct structural model. For this, we proceed

in three steps. First, we provide the DD test statistic and show how it has omnibus power against an arbitrary

nonlinear structure. We also derive the null and local alternative limit distributions of the DD test statistic.

Second, we approximate the nonlinear structural equation using a polynomial function if the linear model is

rejected, and provide a sequential testing procedure to consistently estimate the degree of polynomial func-

tion. This procedure can consistently estimate the polynomial function when it is finite, with the significance

level converging to zero as the sample size tends toward infinity. These properties and their performance

relative to the J-sequential testing procedure and MSCs are also compared through simulation. Third, we in-
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vestigate the structural relationship between the log wage and education years using Card’s (1995) National

Longitudinal Survey data. Our methodology shows that his linear model is correctly specified and leads to

his inference results.

Appendix: Proofs

Before proving the main claims of this study, we provide some preliminary lemmas to facilitate the proofs.

For notational simplicity, we assume that F := V′Z̈Z̈′V and P̈ := Z̈Z̈′V.

Lemma A1. Given Assumptions 1, 2, and 3,

(i) Z′U = OP(
√
n),

(ii) V′V = OP(n), C0Z = OP(n), V′Z = OP(n), Z′Z = OP(n), and K′1Z = OP(n), where for

j = 1, 2, . . ., Kj := [Lj
... 0n×k] and Lj := [Lj1, . . . , L

j
n]′;

(iii) L2Z = OP(n), and K2Z = OP(n);

(iv) Z′U = oP(n). �

Lemma A2. For j = 1, 2, . . ., let d(j)
n (0; ξ0) := (∂j/∂γj)dn(γ; ξ0)|γ=0. Given Assumptions 1, 2, 3, and

H0,2,

(i) d(1)
n (0; ξ0) = −2(ξ0∗ − ξ0)C′0Q1U + 2U′K1F

−1P̈′U + U′P̈F−1(P̈′K1 + K′1P̈)F−1P̈′U;

(ii) d(1)
n (0; ξ0) = −2(ξ0∗ − ξ0)C′0Q1U +OP(n); and

(iii) d(2)
n (0; ξ0) = 2(ξ0∗ − ξ0)2C′0Q1C0 + oP(n2). �

Lemma A3. Given Assumptions 1, 2, 3, andH0,2,

(i) D(γ=0;β)
n,1 = {C′0Q1U}2/{nC′0Q1C0}+ oP(1); and

(ii) D(γ=0;β)
n,1 = OP(1). �

Lemma A4. Given Assumptions 1, 2, 3, andH0,2,

(i) D(γ=0;ξ0)
n,1 = {C′0Q1U}2/{nC′0Q1C0}+ oP(1);

(ii) D(γ=0;ξ0)
n,1 = OP(1). �

Lemma A5. Given Assumptions 1, 2, and 3,

(i) Z′U = OP(
√
n);

(ii) V′V = OP(n), C1Z = OP(n), V′Z = OP(n), Z′Z = OP(n), and K
′
1Z = OP(n), where for

j = 1, 2, . . ., Kj := [0n×1
... Cj

... 0n×k];

(iii) C2Z = OP(n), and K2Z = OP(n);

(iv) Z′U = oP(n). �
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Lemma A6. For j = 1, 2, . . ., d(j)
n (1; ξ1) := (∂j/∂γj)dn(γ; ξ1)|γ=1. Given Assumptions 1, 2, 3, andH0,3,

(i) d(1)
n (1; ξ1) = −2(ξ1∗ − ξ1)C′1Q1U− 2U′K1F

−1P̈′U + U′P̈F−1(P̈′K1 + K1P̈)F−1P̈′U;

(ii) d(1)
n (1; ξ1) = −2(ξ1∗ − ξ1)C′1Q1U +OP(n); and

(iii) d(2)
n (1; ξ1) = 2(ξ1∗ − ξ1)C′1Q1C1 + oP(n2). �

Lemma A7. Given Assumptions 1, 2, 3, andH0,3,

(i) D(γ=1;β)
n,1 = {C′1Q1U}2/{nC′1Q1C1}+ oP(1); and

(ii) D(γ=1;β)
n,1 = OP(1). �

Lemma A8. Given Assumptions 1, 2, 3, andH0,3,

(i) D(γ=1;ξ1)
n,1 = {C′1Q1U}2/{nC′1Q1C1}+ oP(1); and

(ii) D(γ=1;ξ1)
n,1 = OP(1). �

Proof of Lemma A1: (i) Z′U = [
∑

t ZtjUt]. Since E[Z2
tjU

2
t ] < E[Z4

tj ]
1/2E[U4

t ]1/2 by the Cauchy Schwarz

inequality, E[Z4
tj ] < ∞, and E[U4

t ] < ∞ hold by the Assumption 3, we can apply the CLT and obtain the

desired result.

(ii) By the definition of K1, if C′0Z = OP(n), K′1Z = OP(n). We assu me that R is a generic notation

for V, C0, and Z. As R′Z = [
∑
RtjZti], the result follows by ergodicity if E[|RtjZti|] <∞, which holds

by the Cauchy-Schwarz inequality and the fact that E[Z2
ti] < ∞, E[V 2

tj ] < ∞, and E[log2(Xt)] < ∞ by

Assumption 3.

(iii) Similarly, by the definition of K2, if L′2Z = OP(n), K′2Z = OP(n). As E[log4(Xt)] < ∞ and

E[Z2
ti] <∞, the result similarly follows from ergodicity and the Cauchy-Schwarz inequality.

(iv) This simply follows from the fact that {ZtUt} is a mixingale sequence by the Assumption 1 and

applying LLN. �

Proof of Lemma A2: (i) We can obtain the first-order derivative with respect to γ as follows:

d(1)
n (0; ξ0) =− 2P(ξ0)′Z̈Z̈′H(0)[H(0)′Z̈Z̈′H(0)]−1K′1Z̈Z̈′P(ξ0)

−P(ξ0)′Z̈Z̈′H(0)(d/dγ)[H(0)′Z̈Z̈′H(0)]−1H(0)′Z̈Z̈′P(ξ0).

Note that

(d/dγ)[H(0)′Z̈Z̈′H(0)]−1 = −F−1[P̈′K1 + K′1P̈]F−1, (1)

and that P(ξ0) = Y−ξ0ι = V[ξ0∗−ξ0, δ
′
∗]
′+U = Vκ(ξ0)+U by assuming that κ(ξ0) := [ξ0∗−ξ0, δ

′
∗]
′.
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For notational simplicity, we suppress ξ0 in κ(ξ0). From H(0) = V and P̈ := Z̈Z̈′V, it follows that

d(1)
n (0; ξ0) =− 2(Vκ+ U)′P̈F−1K′1Z̈Z̈′(Vκ+ U)︸ ︷︷ ︸

(A)

+ (Vκ+ U)′P̈F−1[P̈′K1 + K′1P̈]F−1P̈′(Vκ+ U)︸ ︷︷ ︸
(B)

.

We now examine each RHS component. The first component (A) can be expressed as a sum of following

four components:

(a) −2κ′VP̈F−1K′1P̈κ = −2κ′K′1Z̈Z̈′Vκ;

(b) −2κ′K′1Z̈Z̈′U;

(c) −2U′P̈F−1K′1P̈κ; and

(d) −2U′P̈F−1K′1Z̈Z̈′U.

Next, the second component (B) can also be expressed as the sum of four other components:

(a) κ′(P̈′K1 + K′1P̈)κ = 2κ′K′1P̈κ;

(b) κ′P̈′K1F
−1P̈′U + U′P̈F−1K′1P̈κ = 2κ′P̈′K1F

−1P̈′U;

(c) κ′K′1P̈F−1P̈′U + U′P̈′F−1P̈′K1κ = 2κ′K′1P̈F−1P̈′U;

(d) U′P̈F−1[P̈′K1 + K′1P̈]F−1P̈′U.

By adding and organizing all these terms according to their order of convergence, we obtain the following:

(a) −2κ′K′1P̈κ+ 2κ′K′1P̈κ = 0;

(b, c) −2κ′{K′1Z̈Z̈′ + K′1P̈F−1P̈′}U = −2(ξ0∗ − ξ0)C0Q1U; and

(d) U′P̈F−1[P̈′K1 + K′1P̈]F−1P̈′U− 2U′P̈F−1K′1Z̈Z̈′U.

Hence, the first-order derivative can be obtained as

d(1)
n (0; ξ0) = −2(ξ0∗ − ξ0)C′0Q1U− 2U′P̈F−1K′1Z̈Z̈′U + U′P̈F−1[P̈′K1 + K′1P̈]F−1P̈′U.

(ii) Given the result in (i), by applying the result of Lemma A1, we obtain

d(1)
n (0; ξ0) = −2(ξ0∗ − ξ0) C′0Q1U︸ ︷︷ ︸

OP(n3/2)

−2 U′P̈F−1K′1Z̈Z̈′U︸ ︷︷ ︸
OP(n)

+ U′P̈F−1[P̈′K1 + K′1P̈]F−1P̈′U︸ ︷︷ ︸
OP(n)

= −2(ξ0∗ − ξ0)C′0Q1U +OP(n).
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(iii) The second-order derivative is obtained as

d(2)
n (0; ξ0) =− 2P(ξ0)′Z̈Z̈′K1[H(0)′Z̈Z̈′H(0)]−1K′1P(ξ0)

− 4P(ξ0)′Z̈Z̈′H(0)(d/dγ)[H(0)′Z̈Z̈′H(0)]−1K′1Z̈Z̈′P(ξ0)

− 2P(ξ0)′Z̈Z̈′H(0)[H(0)′Z̈Z̈′H(0)]−1K′2Z̈Z̈′P(ξ0)

−P(ξ0)′Z̈Z̈′H(0)(d2/dγ2)[H(0)′Z̈Z̈′H(0)]−1H(0)′Z̈Z̈′P(ξ0),

where

d2

dγ2
[H(0)′Z̈Z̈′H(0)]−1 =2F−1[P̈′K1 + K′1P̈]F−1[P̈′K1 + K′1P̈]F−1

− F−1[P̈′K2 + K′2Z̈Z̈′V + 2K′1Z̈Z̈′K1]F−1,

and (1) shows the specific form of (d/dγ)[H(0)′Z̈Z̈′H(0)]−1. Using these results, we arrange the terms to

obtain

d(2)
n (0; ξ0) =− 2(Vκ+ U)′{Z̈Z̈′K1F

−1P̈′ + Z̈Z̈′K1F
−1K′2Z̈Z̈′}(Vκ+ U)

+ 4(Vκ+ U)′P̈F−1[P̈′K1 + K′1P̈]F−1K′1Z̈Z̈′(Vκ+ U)

− 2(Vκ+ U)′P̈F−1[P̈′K1 + K′1P̈]F−1[P̈′K1 + K′1P̈]M−1P̈′(Vκ+ U)

− (Vκ+ U)′P̈F−1[2K′1Z̈Z̈′K1 + P̈′K2 + K′2P̈]F−1P̈′(Vκ+ U).

By organizing each term according to their order of convergence and applying Lemma A1, because E[ZtUt] =

0, we can obtain

• −2κ′{P̈′K1F
−1K1 + K′2Z̈Z̈′}Vκ+ 4κ′[P̈′K1 + K′1P̈]F−1K′1P̈κ− 2κ′[P̈′K1 + K′1P̈]F−1[P̈′ K1 +

K′1P̈]κ + 2κ′[2K′1Z̈Z̈′K1 + K′2P̈ + P̈′K2]κ = 2(κ′K′1Z̈Z̈′K1κ − 2κ′K′1P̈M−1P̈′κ) = 2(ξ0∗ −

ξ0)2C′0Q1C0 = OP(n2).

• −4κ′P̈′K1F
−1K′1Z̈Z̈′U+4κ′[P̈′K1 +K′1P̈]F−1K′1Z̈Z̈′U−4κ′[P̈′K1 +K′1P̈]F−1[P̈′K1 +K′1P̈]F−1

P̈′U−2κ′K′2Z̈Z̈′U−2κ′P̈′K2F
−1P̈′U = −2(ξ0∗− ξ0)[L′2Q1U−2C′0Q1K1F

−1P̈′U+ 2C′0P̈F−1K′1

Q1U] = oP(n2).

• −2U′Z̈Z̈′K1F
−1K′1Z̈Z̈′U−2U′P̈F−1K′2Z̈Z̈′U+ 4U′P̈(P̈′V)−1[P̈′K1 +K′1P̈]F−1 K′1Z MnZ

′U+

2U′P̈F−1{[P̈′K1 + K′1P̈]F−1[P̈′K1 + K′1P̈]−K′1Z̈Z̈′K1 − P̈′K2}F−1P̈′U = oP(n2).
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Therefore, by adding all these terms, we can have d(2)
n (0; ξ0) = 2(ξ0∗ − ξ0)2C′0Q1C0 + oP(n2). �

Proof of Lemma A3: (i) By applying a second-order Taylor expansion to dn(γ;β) and optimizing with

respect to γ, we have

infγ{dn(γ;β)− dn(0;β)} = −{d
(1)
n (0;β)}2

2d
(2)
n (0;β)

+ oP(1).

Given this, we note that d(1)
n (0;β) := (d/dγ)dn(0;β) = 2βC′0Q1U = OP(n3/2) and L

(2)
n (0;β) :=

(d2/dγ2)Ln(0;β) = β2C′0Q1C0 − βL′2Q1U = OP(n2). From this, it follows that

D(γ=0;β)
n,1 = −infγ∈Γn

−1{dn(γ;β)− dn(0;β)}

=
{n−3/2βC′0Q1U}2

n−2(β2C′0Q1C0 − βL′2Q1U)
+ oP(1) =

{C′0Q1U}2

nC′0Q1C0y
+ oP(1),

because L′2Q1U = oP(n2), as shown in (ii).

(ii) We separate the proof into three parts. First, we note that C′0Q1U = C′0Z̈(I− Z̈′V(V′Z̈Z̈′V)−1V′

Z̈)Z̈′U. Lemmas A1(i, ii) and Assumption 3 imply that C′0Q1U = OP(n3/2). Similarly, Lemmas A1(ii)

and Assumption 3 imply that C′0Q1C0 = OP(n2). Further, Lemmas A1(ii, iii, and iv) and Assumption 3

imply that L′2Q1U = oP(n2). By combining all these results, we obtain the desired result. �

Proof of Lemma A4: (i) By applying a second-order Taylor expansion to dn(·; ξ0) and optimizing with

respect to γ, we have

infγ∈Γ{dn(γ; ξ0)− dn(0; ξ0)} = −{d
(1)
n (0; ξ0)}2

2d
(2)
n (0; ξ0)

+ oP(n) = −{2(ξ0∗ − ξ0)C′0Q1U}2

4(ξ0∗ − ξ0)2C′0Q1C0
+ oP(n).

Therefore,

D(γ=0;ξ0)
n,1 = −infγn

−1{dn(γ; ξ0)− dn(0; ξ0)} =
{C′0Q1U}2

nC′0Q1C0
+ oP(1).

(ii) The desired result follows from Lemmas A3 and A4(i). �

Proof of Lemma A5: The proof of this lemma is similar to that of Lemma A1. �

Proof of Lemma A6: (i) We can obtain the first-order derivative with respect to γ as follows:

d(1)
n (1; ξ1) = −2P̃(ξ1)′Z̈Z̈′H̃(1)[H̃(1)′Z̈Z̈′H̃(1)]−1K

′
1Z̈Z̈′P̃(ξ1)

− P̃(ξ1)′Z̈Z̈′H̃(1)(d/dγ)[H̃(1)′Z̈Z̈′H̃(1)]−1H̃(1)′Z̈Z̈′P̃(ξ1).
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Note that

(d/dγ)[H̃(1)′Z̈Z̈′H̃(1)]−1 = −F−1[P̈′K1 + K
′
1P̈]F−1, (2)

and that P̃(ξ1) = Y − ξ1X = V[ξ0∗, ξ1∗ − ξ1,η
′
∗]
′ + U = Vζ(ξ1) + U by assuming that ζ(ξ1) :=

[ξ0, ξ1∗ − ξ1,η
′
∗]
′. For notational simplicity, we further suppress ξ1 of ζ(ξ1). From this, it follows that since

H̃(1) = V,

d(1)
n (1; ξ1) = −2(Vζ + U)′P̈F−1K

′
1Z̈Z̈′(Vζ + U) + (Vζ + U)′P̈F−1[P̈′K1 + K

′
1P̈]F−1P̈′(Vζ + U).

Note that this is the same as d(1)
n (0; ξ0) in Lemma A2(i) when we replace ζ, C1, and K1 with κ, C0, and

K1, respectively.

(ii) From (i) and Lemmas A2 and A5, we can infer that d(1)
n (1; ξ1) = −2(ξ1∗ − ξ1)C′1Q1U +OP(n).

(iii) The second-order derivative is

d(2)
n (1; ξ1) =− 2P̃(ξ1)′Z̈Z̈′K1[H̃(1)′Z̈Z̈′H̃(1)]−1K

′
1P̃(ξ1)

− 4P̃(ξ1)′Z̈Z̈′H̃(1)(d/dγ)[H̃(1)′Z̈Z̈′H̃(1)]−1K
′
1Z̈Z̈′P̃(ξ1)

− 2P̃(ξ1)′Z̈Z̈′H̃(1)[H̃(1)′Z̈Z̈′H̃(1)]−1K
′
2Z̈Z̈′P̃(ξ1)

− P̃(ξ1)′Z̈Z̈′H̃(1)(d2/dγ2)[H̃(1)′Z̈Z̈′H̃(1)]−1H̃(1)′Z̈Z̈′P̃(ξ1),

where

d2

dγ2
[H̃(1)′Z̈Z̈′H̃(1)]−1 = −F−1[V′Z̈Z̈′K2 + K

′
2Z̈Z̈′V + 2K

′
1Z̈Z̈′K1]F−1

+ 2F−1[V′Z̈Z̈′K1 + K
′
1Z̈Z̈′V]F−1[V′Z̈Z̈′K1 + K

′
1Z̈Z̈′V]F−1,

and (2) shows the specific form of (d/dγ)[H̃(1)′Z̈Z̈′H̃(1)]−1. By using these results and arranging the

terms, we obtain

d(2)
n (1; ξ1) =− 2(Vζ + U)′{Z̈Z̈′K1F

−1P̈′ + Z̈Z̈′K1F
−1K

′
2Z̈Z̈′}(Vζ + U)

+ 4(Vζ + U)′P̈F−1[P̈′K1 + K
′
1P̈]F−1K

′
1Z̈Z̈′(Vζ + U)

− 2(Vζ + U)′P̈F−1[P̈′K1 + K
′
1P̈]F−1[P̈′K1 + K

′
1P̈]F−1V′Z̈Z̈′(Vζ + U)

− (Vζ + U)′P̈F−1[2K
′
1Z̈Z̈′K1 + P̈′K2 + K

′
2P̈]F−1V′Z̈Z̈′(Vζ + U).
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If we reorganize the terms according to their order of convergence by applying Lemma A5 and because

E[ZtUt] = 0, we obtain

• −2ζ′{P̈′K1F
−1K1 + K

′
2Z̈Z̈′}Vζ + 4ζ′[P̈′K1 + K

′
1P̈]F−1K

′
1P̈ζ − 2ζ′[P̈′K1 + K

′
1P̈]F−1[P̈′ K1 +

K
′
1P̈]ζ+2ζ′[2K

′
1Z̈Z̈′K1 +K

′
2P̈+P̈′K2]ζ = 2(ζ′K

′
1Z̈Z̈′K1ζ−2ζ′K

′
1P̈M−1P̈′ζ) = 2(ξ1∗−ξ1)2C′1Q1

C1 = OP(n2).

• −4ζ′P̈′K1F
−1K

′
1Z̈Z̈′U+4ζ′[P̈′K1 +K

′
1P̈]F−1K

′
1Z̈Z̈′U−4ζ′[P̈′K1 +K

′
1P̈]F−1[P̈′K1 +K

′
1P̈]F−1

P̈′U−2ζ′K
′
2Z̈Z̈′U−2ζ′P̈′K2F

−1P̈′U = −2(ξ1∗−ξ1)[C′2Q1U−2C′1Q1K1F
−1P̈′U+2C′1P̈F−1K

′
1Q1

U] = oP(n2).

• −2U′Z̈Z̈′K1F
−1K

′
1Z̈Z̈′U−2U′P̈F−1K

′
2Z̈Z̈′U+4U′P̈(P̈′V)−1[P̈′K1 +K

′
1P̈]F−1K

′
1Z̈Z̈′U+2U′P̈

F−1{[P̈′K1 + K
′
1P̈]F−1[P̈′K1 + K

′
1P̈]−K

′
1Z̈Z̈′K1 − P̈′K2}F−1P̈′U = oP(n2).

Therefore, we combine all these terms and obtain d(2)
n (1; ξ1) = 2(ξ1∗ − ξ1)2C′1Q1C1 + oP(n2). �

Proof of Lemma A7: (i) By applying a second-order Taylor expansion to dn(γ;β) and optimizing with

respect to γ, we have

infγ∈Γ{dn(γ;β)− dn(1;β)} = −{d
(1)
n (1;β)}2

2d
(2)
n (1;β)

+ oP(n) = − {βC′1Q1U}2

β2C′1Q1C1 − βC′2Q1U
+ oP(n),

where d(1)
n (1;β) := (d/dγ)dn(1;β) = −2βC′1Q1U = OP(n3/2) and d(2)

n (1;β) := (d2/dγ2)dn(1;β) =

−β2C′1Q1C1 + βC′2Q1U = OP(n2). In (ii), we show that C′2Q1U = oP(n), so that

D(γ=1;β)
n,1 = −infγ∈Γn

−1{dn(γ;β)− dn(1;β)}

=
{n−3/2βC′1Q1U}2

n−2(β2C′1Q1C1 − βC′2Q1U)
+ oP(1) =

{C′1Q1U}2

nC′1Q1C1
+ oP(1),

as desired.

(ii) We proceed with the proof in three components. First, C′1Q1U = C′1Z̈(I − Z̈′V(V′Z̈Z̈′V)−1

V′Z̈)Z̈′U. Lemmas A5(i, ii) and Assumption 3 imply that C′1Q1U = OP(n3/2). Similarly, Lemma A5(ii)

and Assumption 3 imply that C′1Q1C1 = OP(n2). Furthermore, Lemmas A5(ii, iii, and iv) and Assumption

3 imply that C′2Q1U = oP(n2). By combining all these results, we obtain D(γ=1;β)
n,1 = OP(1). �

Proof of Lemma A8: (i) By applying a second-order Taylor expansion to dn(γ; ξ1) and optimizing with
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respect to γ, we have

infγ∈Γ{dn(γ; ξ1)− dn(1; ξ1)} = −{d
(1)
n (1; ξ1)}2

2d
(2)
n (1; ξ1)

+ oP(n) = −{2(ξ1∗ − ξ1)C′1Q1U}2

4(ξ1∗ − ξ1)2C′1Q1C1
+ oP(n)

by Lemmas A6(ii and iii). Therefore, it follows that

D(γ=1;ξ1)
n,1 = −infγ∈Γn

−1{dn(γ; ξ1)− dn(1; ξ1)}

=
{n−3/2(ξ1∗ − ξ1)C′1Q1U}2

n−2(ξ1∗ − ξ1)2C′1Q1C1
+ oP(1) =

{C′1Q1U}2

nC′1Q1C1
+ oP(1),

as desired.

(ii) The desired result follows from Lemmas A7 and A8(i). �

We now prove the main claims of this study.

Proof of Lemma 1: We can apply the ULLN to each row of {n−1/2
∑n

t=1X
γ
t Zt}, so that for each j =

1, 2, . . . ,m, we have

supγ∈Γ

∣∣∣∣n−1
n∑
t=1

Xγ
t Zt,j − E[Xγ

t Zt,j ]

∣∣∣∣ P→ 0, (3)

where Zt,j is the jth-row element of Zt. This result mainly follows from theorem 3(a) of Andrews (1992).

In particular, Assumption 2 implies that Γ is totally bounded; for each j, E[|Xγ
t Zt,j |] ≤ E[M2

t ] < ∞ by

Assumption 3, so that for each γ ∈ Γ, the ergodic theorem holds for n−1
∑n

t=1X
γ
t Zt,j ; and finally,X(·)

t Zt,j

is Lipschitz continuous because for each j,

|Xγ
t Zt,j −X

γ′

t Zt,j | ≤ supγ∈Γ|X
γ
t Lt| · |Zt,j | · |γ − γ′| ≤M2

t |γ − γ′|, (4)

where M2
t = OP(1). These three conditions are the assumptions required for theorem 3(a) of Andrews

(1992) to prove the ULLN. This also implies that E[X
(·)
t Vt] is continuous on Γ. Note that

X(γ)′Q1U = X(γ)′Z̈[I− Z̈′VF−1V′Z̈]Z̈′U,

to obtain supγ∈Γ |n−3/2X(γ)′Q1U−n−1/2E[Xγ
t Z̃′t]J1Z̃

′U| = oP(1), because Mn
P→M0 and n−1

∑n
t=1

ZtV
′
t

P→ E[ZtV
′
t] by ergodicity, where Z̃ := M

1/2
0 Z. Furthermore, we can apply the CLT to n−1/2Z′U,

so that n−1/2Z′U
A∼ N(0,Σ), implying that n−1/2X(·)′Q1U⇒ G(·), where G(·) is a Gaussian stochastic

process whose covariance kernel is identical to κ(·, ·).
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Second, we apply the ULLN to n−2X(·)′Q1X(·). We separate our proof into two parts. We first show

that supγ∈Γ |n−2X(γ)Z̈Z̈′X−E[Xγ
t Z′t]M0E[Z′tX

γ
t ]| = oP(1), and then show that supγ∈Γ |n−2X(γ)′ZGn

Z′X(γ)− E[Xγ
t Z′t]G0E[ZtX

γ
t ]| = oP(1), where Gn := MnZ

′VF−1V′ZMn and G0 := M0E[ZtV
′
t](E

[VtZ
′
t]M0E[ZtV

′
t])
−1E[VtZ

′
t]M0.

For the first part, we note the following triangle inequality:

sup
γ∈Γ
|n−2X(γ)′Z̈Z̈′X(γ)− E[Xγ

t Z̃′t]E[Z̃tX
γ
t ]| ≤ sup

γ∈Γ
|(n−1X(γ)′Z− E[Xγ

t Zt])Mnn
−1Z′X(γ)|

+ sup
γ∈Γ
|E[Xγ

t Zt](Mn −M0)n−1Z′X(γ)|+ sup
γ∈Γ
|E[Xγ

t Z̃t](n
−1Z̃′X(γ)− E[Z̃tX

γ
t ])|.

supγ∈Γ |(n−1X(γ)′Z) − E[Xγ
t Z′t]| = oP(1) by (3), and |Mn −M0| = oP(1) by Assumption 1. More-

over, supγ∈Γ |n−1X(γ)′Z| = OP(1), by Assumption 3, ensuring that supγ∈Γ |E[Xγ
t Z′t]| = O(1). Thus,

supγ∈Γ |n−2X(γ)′Z̈Z̈′X(γ)− E[Xγ
t Z̃′t]E[Z̃tX

γ
t ]| = oP(1).

For the second part, note that

sup
γ∈Γ
|n−2X(γ)′ZGnZ

′X(γ)− E[Xγ
t Z′t]G0E[ZtX

γ
t ]| ≤ sup

γ∈Γ
|(n−1X(γ)′Z− E[Xγ

t Zt])Gnn
−1Z′X(γ)|

+ sup
γ∈Γ
|E[Xγ

t Zt](Gn −G0)n−1Z′X(γ)|+ sup
γ∈Γ
|E[Xγ

t Zt]G0(n−1Z′X(γ)− E[ZtX
γ
t ])|.

Here, Gn = G0 + oP(1), because |Mn −M0| = oP(1) and n−1Z′V = E[ZtV
′
t] + oP(1) by Assumptions

1, 3, and the ergodicity. Therefore, supγ∈Γ |n−2X(γ)′ZGnZ
′X(γ) − E[Xγ

t Z′t]G0E[ZtX
γ
t ]| = oP(1), as

for the first part.

From these two parts, it follows that supγ∈Γ |n−2X(γ)′Q1X(γ) − E[Xγ
t Z̃′t]J1E[Z̃tX

γ
t ]| = oP(1), by

noting that M
1/2
0 J1M

1/2
0 = M0 −G0, and the desired result follows from the definition of σ2

1(·). �

Proof of Lemma 2: The desired result follows from Lemmas A3 and A4. Specifically, we apply the

martingale CLT and continuous mapping theorem to derive the asymptotic null distribution of Z0. �

Proof of Lemma 3: The desired result follows from Lemmas A7 and A8. Specifically, we apply the

martingale CLT and continuous mapping theorem to derive the asymptotic null distribution of Z1. �

Proof of Lemma 4: (i) Letting γ to converge to zero,

plimγ→0N
(2)
n (γ) = plimγ→02{(d/dγ)X(γ)′Q1U}2 + 2{X(γ)′Q1(d/dγ)X(γ)} = 2{C0Q1U}2,
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because plimγ→0(d/dγ)X(γ) = C0 and plimγ→0X(γ)′Q1U = ι′Q1U = 0. Furthermore,

plimγ→0D
(2)
n (γ) =plimγ→02n{(d2/dγ2)X(γ)′Q1X(γ)}2

+ plimγ→02n{(d/dγ)X(γ)′Q1(d/dγ)X(γ)} = 2nC0Q1C0,

because plimγ→0(d/dγ)X(γ) = C0 and plimγ→0(d2/dγ2)X(γ)′Q1U = L′2Q1ι = 0.

We now let γ to converge to 1.

plimγ→1N
(2)
n (γ) = plimγ→12{(d/dγ)X(γ)′Q1U}2 + 2{X(γ)′Q1(d/dγ)X(γ)} = 2{C1Q1U}2,

because plimγ→1(d/dγ)X(γ) = C1 and plimγ→1X(γ)′Q1U = X′Q1U = 0. Furthermore,

plimγ→1D
(2)
n (γ) =plimγ→12n{(d2/dγ2)X(γ)′Q1X(γ)}2

+ plimγ→12n{(d/dγ)X(γ)′Q1(d/dγ)X(γ)} = 2nC1Q1C1,

because plimγ→1(d/dγ)X(γ) = C1 and plimγ→0(d2/dγ2)X(γ)′Q1U = C′2Q1X = 0. �

Proof of Theorem 1: From Lemma 4, we have

sup
γ∈Γ

1

n

{X(γ)′Q1U}2

X(γ)′Q1X(γ)
≥ max

[
1

n

{C′0Q1U}2

C′0Q1C0
,

1

n

{C′1Q1U}2

C′1Q1C1

]
.

Thus, the desired result follows from Lemmas 1, 2, and 3. �

Proof of Theorem 2: (i) For notational simplicity, for each γ ∈ Γ, we assume that g(γ) := J1E[Z̃tX
γ
t ] and

h := J1E[Z̃tm(Xt)]. Note that from (9), it follows that

d0 − d(γ) =

{
h′g(γ)√

h′h
√

g(γ)′g(γ)

}2

(h′h),

so that d0 − d(·) ≥ 0. Therefore, if supγ∈Γ(d0 − d(γ)) = 0, it implies that c(·) := 〈h,g(·)〉 ≡ 0.

We prove the given claim by contradiction. Now, assume that c(·) ≡ 0 on Γ. From the condition

that J1E[Z̃tm(Xt)] 6= 0, it follows that h 6= 0, and so g(·) ≡ 0 from the assumption that c(·) ≡ 0

and E[Z̃tX
(·)
t ] ≡ 0. If we assume that M(·, ·) denotes the moment generating function of (log(Xt), Z̃

′
t)
′,

so that M(γ, τ ) := E[exp(γ log(Xt) + τ ′Z̃t)], then for each γ, E[Xγ
t Z̃t] = ∇τM(γ, τ )|τ=0, so that

E[Z̃tX
(·)
t ] ≡ 0 implies that E[Z̃t| log(Xt)] = 0 with probability 1 by applying theorem 1 of Bierens (1982)
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to the moment generating function. Note that log(·) is a one-to-one mapping from R+ to R, so that it is a

measure preserving transformation. This implies that E[Z̃t|Xt] = 0 with probability 1. We may multiply

m(Xt) to each side and apply the law of iterated expectation: E[m(Xt)E[Z̃t|Xt]] = E[m(Xt)Z̃t] = 0.

Note that this is a contradiction to the condition that J1E[Z̃tm(Xt)] = 0. Therefore, for some γ̃, c(γ̃) 6= 0,

and this implies that d0 − d(γ̃) > 0.

(ii) Because dn(β, γ) = (Y − βX(γ))′Q1(Y − βX(γ)) and Y = Vς∗ + n−1/2s + U, where s :=

(s(X1), . . . , s(Xn))′, we have

Dn,1 = sup
γ∈Γ

{X(γ)′Q1Y}2

nX(γ)′Q1X(γ)
= sup

γ∈Γ

{n−2X(γ)′Q1s + n−3/2X(γ)′Q1U)}2

n−2X(γ)′Q1X(γ)
.

From Lemma 1, we have n−3/2X(·)′Q1U ⇒ G(·) and supγ∈Γ |n−2X(γ)′Q1X(γ) − σ2
1(γ)| P→ 0, where

σ2
1(γ) := E[Xγ

t Z̃′t]J1E[Z̃ts(Xt)]. Note that n−2X(γ)′Q1s = n−2X(γ)′Z̈Z̈′s− n−2X(γ)′Z̈Z̈′VF−1V′Z̈

Z̈′s. In the proof of Lemmas 1 and A1, we saw that supγ∈Γ |n−1X(γ)′ Z−E[Xγ
t Zt]|

P→ 0 and n−1V′Z
P→

E[VtZ
′
t]. Furthermore, if we apply the ergodic theorem, n−1Z′s

P→ E[Zts(Xt)] by the moment condition

that E[s2(Xt)] < ∞. Thus, we have supγ∈Γ |n−2Z(γ)′Q1s −E[Xγ
t Z̃t]J1E[Z̃ts(Xt)]|

P→ 0. Therefore, it

follows that

Dn,1 ⇒ sup
γ∈Γ

{E[Xγ
t Z̃t]J1E[Z̃ts(Xt)] + G(γ)}2

σ2
1(γ)

= sup
γ∈Γ
{ν1(γ) + Z1(γ)}2

by the definitions of ν1(·) := E[X
(·)
t Z̃t]J1E[Z̃ts(Xt)]/σ1(·) and Z1(·) := G(·)/σ(·). This completes the

proof. �

Proof of Theorem 3: (i) This is obvious from Corollary 1.

(ii) For the given claim, note that limn→∞ P(q̂n > q∗) = limn→∞ αn = 0 by the given condition.

Furthermore, for any q < q∗, if cvq(αn) = o(n), then limn→∞ P(Dn,q > cvq(αn)) = 1, implying that the

desired result follows if cvq(αn)) = o(n). We show this as follows.

First, note that supγ∈Γ(q̄) Z2
q (γ) ≤ supγ∈Γ(q̄) max2[0,Zq(γ)] + supγ∈Γ(q̄) min2[0,Zq(γ)]. This implies

that for any u > 0,

P

(
sup
γ∈Γ(q̄)

Z2
q (γ) ≥ u2

)
≤ P

(
sup
γ∈Γ(q̄)

Zq(γ) ≥ u√
2

)
+ P

(
inf

γ∈Γ(q̄)
Zq(γ) ≤ − u√

2

)

= 2P

(
sup
γ∈Γ(q̄)

Zq(γ) ≥ u√
2

)
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from the inequality in the proof of theorem 2 of Cho and Phillips (2018). We further note that Borel’s

inequality (e.g., Piterbarg, 1996, p. 13) implies that

P

(
sup
γ∈Γ(q̄)

Zq(γ) ≥ u√
2

)
≤ 2Ψ

(
u/
√

2− aq
σq

)
,

and so it follows that

P

(
sup
γ∈Γ(q̄)

Z2
q (γ) ≥ u2

)
≤ 4Ψ

(
u/
√

2− aq
σq

)
≤ 2 exp

(
−
u2 − 2

√
2uaq + a2

q

4σ2
q

)

from the fact that Ψ(·) ≤ 1
2 exp(−(·)2/2). We now let the left-hand side of this inequality and u2 to be αn

and cvq(αn), respectively. Then, it follows that

− log(αn)

n
≥ 1

n

(
a2
q

4σ2
q

− log(2)

)
+

1

4σ2
q

(
cvq(αn)

n

)
− aq√

2σ2
q

(
cvq(αn)

n2

)1/2

.

Note that n−1(a2
q/(4σ

2
q ) − log(2)) → 0, and the sum of the last terms is greater than zero, provided

that cv1/2
q (αn) > 2

√
2aq and is achieved as αn → 0. Furthermore, the given condition implies that

−log(αn)/n→ 0, so that

1

4σ2
q

(
cvq(αn)

n

)
− aq√

2σ2
q

(
cvq(αn)

n2

)1/2

= o(1).

Therefore, it follows that cvq(αn) = o(n), as desired. �
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Sets α Test Stat. q \ n 100 200 300 400 500 600 700 800 900 1,000

A

10%

Dn

1 19.23 7.20 3.37 0.90 0.77 0.13 0.27 0.13 0.10 0.03
2∗ 67.70 80.23 84.33 85.70 87.20 87.07 86.70 87.43 86.87 87.10
3 11.07 10.33 10.17 11.03 9.83 10.60 11.17 10.10 10.70 10.13
≥ 4 2.00 2.23 2.13 2.37 2.20 2.20 1.87 2.33 2.33 2.73

Jn

1 32.53 15.63 7.33 2.97 1.60 0.63 0.40 0.47 0.30 0.10
2∗ 59.40 76.47 84.10 87.87 89.53 89.70 89.70 90.43 90.17 90.27
3 4.87 4.27 4.57 5.03 4.53 5.37 5.10 4.23 5.13 4.77
≥ 4 3.20 3.63 4.00 4.13 4.33 4.30 4.80 4.87 4.40 4.87

5%

Dn

1 25.30 10.13 4.77 1.60 0.97 0.33 0.33 0.20 0.17 0.03
2∗ 67.57 84.00 88.57 91.00 93.43 92.97 92.63 93.17 92.93 93.20
3 6.60 5.10 5.90 6.60 5.13 5.67 6.27 5.60 6.00 5.80
≥ 4 0.53 0.77 0.77 0.80 0.47 1.03 0.77 1.03 0.90 0.97

Jn

1 38.33 20.03 11.03 5.03 2.57 1.40 0.97 0.97 0.50 0.23
2∗ 57.93 76.33 84.53 89.70 93.43 94.20 94.37 94.53 94.97 95.10
3 2.47 2.27 2.23 3.20 2.07 2.40 2.67 2.37 2.70 2.50
≥ 4 1.27 1.37 2.20 2.07 1.93 2.00 2.00 2.13 1.83 2.17

1%

Dn

1 37.30 19.13 9.50 4.27 2.37 1.20 0.80 0.87 0.47 0.20
2∗ 61.03 79.20 88.97 94.00 96.50 97.13 97.73 97.77 97.93 98.27
3 1.60 1.67 1.50 1.63 1.07 1.53 1.40 1.20 1.40 1.47
≥ 4 0.07 0.00 0.03 0.10 0.07 0.13 0.07 0.17 0.20 0.07

Jn

1 50.97 31.63 19.70 10.77 6.07 4.07 2.23 1.80 1.20 0.63
2∗ 48.23 67.47 79.43 88.27 93.07 94.87 96.87 97.27 97.80 98.30
3 0.53 0.63 0.47 0.60 0.57 0.70 0.57 0.53 0.70 0.70
≥ 4 0.27 0.27 0.40 0.37 0.30 0.37 0.33 0.40 0.30 0.37

B

10%

Dn

1 19.10 7.60 3.90 1.20 0.87 0.27 0.30 0.30 0.17 0.03
2∗ 66.67 79.17 82.97 84.80 86.03 86.00 85.97 86.63 87.27 87.97
3 11.07 10.93 10.20 10.77 10.23 10.73 11.10 10.00 10.13 9.57
≥ 4 2.87 2.30 2.93 3.23 2.87 3.00 2.63 3.07 2.43 2.43

Jn

1 32.80 16.70 8.50 3.93 2.00 1.00 0.67 0.70 0.40 0.13
2∗ 59.03 75.87 82.87 85.77 88.83 89.70 89.80 90.00 90.27 90.20
3 4.13 3.80 3.87 4.50 3.47 4.63 4.03 3.87 4.23 4.33
≥ 4 4.03 3.63 4.77 5.80 5.70 4.67 5.50 5.43 5.10 5.33

5%

Dn

1 25.30 10.97 5.20 1.93 1.20 0.47 0.40 0.33 0.27 0.10
2∗ 67.40 82.63 87.40 90.40 92.53 91.70 92.27 92.27 93.10 93.03
3 6.20 5.47 6.00 6.50 5.33 6.50 6.17 6.47 5.87 6.00
≥ 4 1.10 0.93 1.40 1.17 0.93 1.33 1.17 0.93 0.77 0.87

Jn

1 37.83 21.43 11.93 5.77 3.20 1.90 1.33 1.00 0.70 0.27
2∗ 58.07 74.93 83.77 89.07 92.53 93.53 94.20 94.73 95.00 95.10
3 2.27 1.73 1.87 2.87 1.97 2.13 2.10 1.87 2.33 2.13
≥ 4 1.83 1.90 2.43 2.30 2.30 2.43 2.37 2.40 1.97 2.50

1%

Dn

1 35.03 18.50 9.63 4.50 2.40 1.57 1.00 0.83 0.53 0.20
2∗ 62.93 79.63 88.70 93.43 96.27 96.63 97.30 97.57 97.73 97.87
3 1.83 1.67 1.43 1.97 1.20 1.67 1.47 1.50 1.63 1.90
≥ 4 0.20 0.20 0.23 0.10 0.13 0.13 0.23 0.10 0.10 0.03

Jn

1 47.67 31.00 20.03 11.63 6.77 4.37 2.50 2.10 1.40 0.73
2∗ 51.47 68.33 79.23 87.50 92.20 94.53 96.93 97.17 97.67 98.07
3 0.43 0.33 0.27 0.47 0.73 0.60 0.30 0.20 0.60 0.70
≥ 4 0.43 0.33 0.47 0.40 0.30 0.50 0.27 0.53 0.33 0.50

Table 1: ESTIMATED POLYNOMIAL DEGREE BY THE DD- AND J-TEST STATISTICS (IN PERCENTAGE).
Number of Replications: 3,000. This table shows the estimated polynomial degrees by sequentially apply-
ing the DD- and J-test statistics when the significance levels are fixed irrespective of sample size. The true
polynomial equation degree is 2, as indicated by the asterisks (*). DGP: Yt = 1 + Dt + Xt + X2

t + Ut,
Ut = Gt, Xt := exp(1

2(W′
tι2 +Gt)), and (Dt, Gt,W

′
t)
′ ∼ IID N(04, I4). Model:M′q := {mt,q(ω

(q)) :=

Yt − ξ0 −Xtξ1 − . . . −Xq
t ξq −Dtη − βXγ

t : ω(q) ∈ Ω(q)} with q ∈ I(3), ω(q) := (ξ0, . . . , ξq, η, β, γ)′,
and Γ := [−0.25, 3.5]. Sets A and B assume that Zt := (1, Dt,Wt,W

2
1,t,W

2
t,2,W

3
t,1)′ and Zt :=

(1, Dt,Wt,W
2
1,t,W

2
t,2,W

3
t,1,W

3
t,2)′, respectively.
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Sets Methods Test Stat. \ n 100 200 300 400 500 600 700 800 900 1,000

A

Seq. Est. Dn 67.70 83.07 87.93 91.00 93.83 93.93 94.40 95.67 95.00 95.47
with Jn 59.40 76.63 84.93 89.70 93.70 94.63 95.23 95.83 96.53 96.63

αn = n−1/2 (Hypo. Rate) (90.00) (92.92) (94.22) (95.00) (95.52) (95.91) (96.22) (96.46) (96.66) (96.83)
Seq. Est. Dn 67.23 82.17 89.40 94.00 96.57 97.40 97.83 98.30 98.43 98.90

with Jn 55.77 70.97 80.87 88.73 93.03 94.67 96.77 97.20 97.87 98.63
αn = n−3/4 (Hypo. Rate) (96.83) (98.11) (98.61) (98.88) (99.05) (99.17) (99.26) (99.33) (99.39) (99.43)

Seq. Est. Dn 61.03 76.50 85.70 92.32 94.87 96.30 97.90 98.20 98.63 99.17
with Jn 48.23 63.60 73.70 83.40 89.00 91.50 95.07 95.67 97.17 98.20

αn = n−1 (Hypo. Rate) (99.00) (99.50) (99.66) (99.75) (99.80) (99.83) (99.85) (99.87) (99.88) (99.90)
Akaike-MSC 64.03 74.70 76.90 78.13 77.53 78.20 77.83 78.83 78.03 79.43

Bayesian-MSC 65.50 81.20 89.27 93.20 95.67 96.37 97.13 97.40 97.47 97.93
Hannan-Quinn-MSC 67.10 81.80 86.53 88.80 90.63 90.80 90.70 92.43 91.40 92.63

B

Seq. Est. Dn 66.67 81.70 86.70 90.40 93.20 92.63 94.00 94.47 94.57 95.17
with Jn 59.03 75.87 83.67 89.07 92.83 93.87 95.07 95.77 96.03 96.57

αn = n−1/2 (hypo. rate) (90.00) (92.92) (94.22) (95.00) (95.52) (95.91) (96.22) (96.46) (96.66) (96.83)
Seq. Est. Dn 67.20 81.57 89.23 93.37 96.17 96.93 97.53 97.93 98.17 98.87

with Jn 56.77 71.00 80.20 87.87 92.00 94.23 96.73 97.23 97.80 98.37
αn = n−3/4 (hypo. rate) (96.83) (98.11) (98.61) (98.88) (99.05) (99.17) (99.26) (99.33) (99.39) (99.43)

Seq. Est. Dn 62.93 77.57 85.87 92.10 94.57 96.17 97.80 98.03 98.50 99.17
with Jn 51.47 65.17 74.97 83.40 89.03 91.63 95.00 95.67 97.33 98.13

αn = n−1 (hypo. rate) (99.00) (99.50) (99.66) (99.75) (99.80) (99.83) (99.85) (99.87) (99.88) (99.90)
Akaike-MSC 63.50 73.33 76.57 77.10 77.73 77.23 77.07 78.83 78.67 78.93

Bayesian-MSC 66.20 80.63 88.90 92.57 95.60 95.73 97.17 97.43 97.20 97.33
Hannan-Quinn-MSC 67.47 80.70 85.20 88.47 90.37 90.10 90.47 91.13 91.77 91.73

Table 2: PRECISION RATES OF THE DD- AND J-SEQUENTIAL TESTING PROCEDURES AND MSCS (IN

PERCENTAGE). Number of Replications: 3,000. This table shows the correctly estimated polynomial
degree percentages obtained using the DD- and J-sequential testing procedures and MSCs. The figures
in parentheses denote (1 − αn) × 100, where αn = 1/n1/2, 1/n3/4, and 1/n, with the best perform-
ing result for each sample size indicated in boldface; this is fixed irrespective of sample size. The true
polynomial equation degree is 2, as indicated by asterisks (*). DGP: Yt = 1 + Dt + Xt + X2

t + Ut,
Ut = Gt, Xt := exp(1

2(W′
tι2 +Gt)), and (Dt, Gt,W

′
t)
′ ∼ IID N(04, I4). Model:M′q := {mt,q(ω

(q)) :=

Yt − ξ0 −Xtξ1 − . . . −Xq
t ξq −Dtη − βXγ

t : ω(q) ∈ Ω(q)} with q ∈ I(3), ω(q) := (ξ0, . . . , ξq, η, β, γ)′,
and Γ := [−0.25, 3.5]. Sets A and B assume that Zt := (1, Dt,Wt,W

2
1,t,W

2
t,2,W

3
t,1)′ and Zt :=

(1, Dt,Wt,W
2
1,t,W

2
t,2,W

3
t,1,W

3
t,2)′, respectively.
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Dependent Variable Degree (q) \ Test Jn,q Dn,q MSC Effective
F-statistic

log(wage) in 1976
1 0.4733 0.4680 −0.0069

(0.370) (0.134) - 9.173

2 0.0055 0.0001 −0.0053 (10%)
(0.976) (0.998) -

log(wage) in 1978
1 0.6810 0.4529 −0.0083

(0.198) (0.112) - 8.917

2 0.3480 0.2249 −0.0060 (10%)
(0.225) (0.806) -

Table 3: APPLICATION OF THE DD- AND J-SEQUENTIAL TESTING PROCEDURES AND MSCS TO CARDS

(1995) DATA SET. This table shows the J- and DD-sequential testing procedure to Card’s (1995) data set.
The model controls are the location dummy variables, family characteristics, experience, and the squared of
experience. The parameter space for γ is [0.5, 3.5] for all specifications. The figures in parentheses denote
the test statistics p-values. Conditional heteroskedasticity is assumed to estimate E[U2

t ZtZ
′
t]; we obtained

the critical values of the test statistics through simulation based on the estimated covariance matrix. The
simulation was replicated 500 times. The polynomial degree selected by each method is denoted in boldface
font.

Dependent Variable log(wage) in 1976 log(wage) in 1978

Estimation OLS TSLS OLS TSLS
(1) (2) (3) (4)

Education 0.074∗∗∗ 0.144∗∗∗ 0.070∗∗∗ 0.151∗∗∗

(0.004) (0.035) (0.004) (0.036)
Experience 0.086∗∗∗ 0.111∗∗∗ 0.070∗∗∗ 0.099∗∗∗

(0.007) (0.014) (0.007) (0.015)
Experience-Squared -0.236∗∗∗ -0.230∗∗∗ -0.215∗∗∗ -0.211∗∗∗

/100 (0.032) (0.035) (0.035) (0.039)
Black -0.189∗∗∗ -0.144∗∗∗ -0.196∗∗∗ -0.149∗∗∗

Indicator (0.019) (0.029) (0.020) (0.029)
Live in South -0.141∗∗∗ -0.102∗∗ -0.097∗∗ -0.042

(0.033) (0.039) (0.035) (0.045)
Live in SMSA 0.161∗∗∗ 0.126∗∗∗ 0.170∗∗∗ 0.128∗∗∗

(0.015) (0.023) (0.017) (0.026)
Single Mother 0.011 0.003 0.002 0.009

Family Indicator (0.029) (0.032) (0.031) (0.034)
Both Parents’ Education Below –0.012 0.078 –0.022 0.087

High School (0.020) (0.049) (0.022) (0.053)
Regional dummies Yes Yes Yes Yes
n 3,010 3,010 2,438 2,438
Adj R2 0.29 0.20 0.29 0.17

Table 4: ESTIMATION RESULTS OF THE ORIGINAL CARD’S (1995) MODEL BY OLS AND TSLS METH-
ODS. ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001. Robust standard errors are provided in parentheses. The
dependent variables are the log hourly wages in 1976 and 1978 as shown in Columns (1)∼(2) and (3)∼(4),
respectively. In Columns (2) and (4), we employ the instrumental variables constructed using the proximity
variable of living near four-year public or private college and their interaction with the dummy variable
indicating the single-mother family structure.
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