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1. Introduction 
 

Analysis of asset manager style based on Sharpe’s (1988, 1992) concept of effective mix has become 

one of the most widespread and influential analytic practices in the investment banking and pension 

fund management industries. The style analysis, often called “return-based style analysis” (RBSA 

hereafter), is obtained from constrained regression of the returns of a mutual fund on appropriately 

chosen style indices. The imposed constraints consist of two restrictions: (i) sum of all factor exposures 

is equal to one (sum-to-one restriction), and (ii) exposures should be non-negative (non-negativity 

restriction). Its appeal derives from its conceptual elegance, its ease of interpretation, and ready 

availability of input data such as style indices for RBSA. 

Although RBSA has been popular in analyzing manager style, its one important limitation is the 

assumption that manager style does not change over time, which unrealistically implies that the 

manager always adopts the same investment strategy. However, many studies have presented empirical 

evidence supporting that manager changes over time (e.g., Gallo and Lockwood, 1999; Kim et. al., 

2000; Posthuma and Van Der Sluis, 2005). 

When shift in manager style is assumed to occur continuously and gradually over time, such 

smoothing time variation can be captured by “time-varying parameter models” such as state-space 

models usually estimated by the Kalman filter method. Several studies including Swinkels and Van Der 

Sluis (2006), Darolles and Vaissie (2012), and Marquesa et. al. (2012) proposed such modeling 

methods to incorporate smoothing time variation in style analysis. Although these studies opened a 

path toward a more general framework for style analysis, their methodology is not fully general as their 

time-varying models can only be applicable to either the weak style analysis or semi-strong style 

analysis according to the terminology of DeRoon et. al. (2004). In their study, RBSA subject to both 

sum-to-one and non-negativity restrictions is called “strong RBSA,” while RBSA without any 

restriction is called “weak RBSA.” Additionally “semi-strong RBSA” is subject to only sum-to-one 

restriction (no non-negativity restriction).  

There can be a variety of sources generating shifts and time variation in manager style. Two 

obvious candidates are (i) mangers’ investment philosophy and (ii) management structure. If these 

factors are considered important sources, then the previously proposed “time-varying parameter 

models” become inappropriate, because these factors do not change continuously and gradually. Rather 

they tend to change infrequently and abruptly. In that case, the standard structural break models 

pioneered by Chow (1960), Andrews (1993), Bai (1997), and Bai and Perron (1998) can provide more 
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realistic ways to capture time variation in style analysis. To the best of our knowledge, only two studies 

applied Chow-type structural break tests to style analysis. Swinkels and Van Der Sluis (2001) used the 

standard Chow test to detect structural breaks in style analysis, but with a priori imposed break dates. 

The limitation of imposing known break dates was relaxed by Annaert and Van Campenhout (2002) 

following the methodology of Andrews (1993), Bai (1997), and Bai and Perron (1998). However, their 

testing procedure with unknown break dates can be applied only to either weak RBSA or semi-strong 

RBSA. 

It is remarkable, therefore, that no generally applicable and rigorously justified methods 

presently exist to efficiently test for changes in manager style when the two restrictions (sum-to-one 

and non-negativity) are jointly imposed. The explanation for this is, however, straightforward: the 

essential non-negativity constraints on the coefficients of the style regression equation create a 

particularly difficult non-standard problem for inference, as explained in Andrews (1997a, 1997b, 1999, 

2000). Previously, a generally applicable theory of inference in such situations, especially when the 

true parameter may be on the boundary imposed by the non-negativity constraints, was not available. 

Andrews (1999) provided general and elegant results that, for the first time, make possible the desired 

inferences in such circumstances. Kim et. al. (2005) applied Andrews’s results to construct confidence 

intervals of style weights. In this study, we apply and extend Andrews’s results to develop a formal 

structural break test in the framework of Sharpe’s effective mix when the two restrictions (sum-to-one 

and non-negativity) are imposed jointly. 

We are particularly motivated to obtain methods that permit us to investigate whether the style 

of a fund may have changed through time, as shifts in style represent a form of event risk that investors 

may prefer to avoid. A fund manager’s style can appear to evolve or shift, or a fund may experience 

manager turnover, leading to apparent changes in style. Are such apparent changes real, or do they 

simply represent random fluctuations around a relatively stable core style? We will provide 

straightforward procedures, based on Andrews’s (1997a, 1997b, 1999, 2000) results, that will permit us 

to answer these and related questions. 

The paper is organized as follows. In Section 2, we provide a brief review of the relevant 

aspects of style analysis. We then develop a new testing procedure for testing for one or more style 

shifts at known points in time in the presence of maintained sum-to-one and non-negativity constraints. 

In Section 3, we extend Andrews’s (1997a, 1997b, 1999, 2000) results to develop a test for a style shift 

at an unknown point in time. Section 4 discusses extensions to test for multiple style shifts at unknown 

points in time. In Section 5, we apply the proposed method to real data. Section 6 concludes.  



 4 

 

2. Sharpe’s Effective Mix 
 

2.1 A Brief Review   

 
Sharpe’s effective mix provides a way to analyze the investment style of a fund by relating fund 

performance to a specified set of relevant investment style indices. The relationship between fund 

performance and style index performance is as follows: 

 

0t t ty X β ε′= + ,    t T= 1 2, ,..., ,  

 

where yt  denotes fund returns in period t , X t  is a 1×k  vector of style index returns in period t , 0β  is 

an unknown 1×k  vector of style weights for the fund, and εt  is the fund’s idiosyncratic return, 

orthogonal to the style indices in the sense that E X t t( )ε = 0. The style weights must satisfy two key 

conditions: they must (i) sum to one ι β′ =
0

( 1)  and (ii) be non-negative ).0( 0 ≥β  These restrictions 

ensure that we interpret 0tX β′  as the return on a “style portfolio” wherein short positions in the style 

indices are not permitted. 

A primary goal of Sharpe’s effective mix analysis is to determine the unknown style weights, 

0β . This can be accomplished using standard constrained least squares regression methods. Estimated 

style weights satisfying the necessary constraints can be obtained by solving the constrained least 

squares problem: 

 

min
β

 ∑
=

− ′−
T

t
tt XyT

1

21 )( β ,      

s t. .      1, 0ι β β′ = ≥ .  

 

This is a convex linear-quadratic programming problem. Under general conditions, the resulting 

estimator ~
β  is a strongly consistent estimator for 0β , as proved by Andrews (1997a, 1997b, 1999, 

2000). 
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2.2 Style Shifts and Hypotheses about Style Weights 
 

The starting point for testing whether manager style has shifted is to cast the hypotheses about manager 

style into a framework that permits us to apply Andrews’s (1997a, 1997b, 1999, 2000) results. To 

construct a test with power against style shifts, we elaborate the basic style regression and consider 

 

β β ε

β ε

′ ′= + +

′≡ +

 



* *

1 1 2 2

* ,

t t t t

t t

y X X

X
 

 

where tt XX =1
~  in periods up to time ][ Tτ  (assumed known for now) and the zero vector thereafter 

and tt XX =2
~  for ][ Tt τ>  and zero otherwise. Moreover, *β ′ =  ( )* *

1 2:  β β′ ′ . Here, τ  is between zero 

and one, and ][ Tτ  is the integer part of Tτ . Hereafter, we will use Tτ  in place of ][ Tτ  when there is no 

confusion. The relevant null thus has the form β β1 2
* *= , which we re-write in the standard form as 

 

,0* =βS  

 

where S  is a 2k k×  matrix given by S I Ik k≡ −[ | ] . Here S  corresponds to R  of the general textbook 

setup of *R rβ = , and we have .0=r  The alternative is that β β1 2
* *≠  (or * 0Sβ ≠ ); that is, that style 

differs before and after period τ .  

For the general situation, the test is based on R rT
~
β − . To analyze style shifts, we thus consider 

tests based on S T T T
~ ~ ~
β β β= −1 2 , where )~,~(~

21 TTT βββ ′′=  is the solution to the constrained regression: 

 

min
,β β1 2

  1 2
1 1 2 2

1
( ) ,

T

t t t
t

T y X Xβ β−

=

′ ′− −∑                                                                                        (2.1) 

            s t. .       0,1 11 ≥=′ ββι , 

                        0,1 22 ≥=′ ββι . 

 

In the usual situation wherein the non-negativity constraints are absent, the standard statistics based on 

R rT
β − (where βT  is the ordinary least squares [OLS] estimator) have a chi-squared distribution 
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asymptotically (see, e.g., Chapter 4; in White, 1984). The standard test based on S T
β  is well known, 

such as the Chow test for “structural breaks” (Chow, 1960). 

The presence of the non-negativity constraints renders the standard theory inapplicable. 

However, Andrews (1997a, 1997b, 1999, 2000) proposed methods that permit computation of test 

statistics whose level can be controlled asymptotically, making it possible, for the first time, to conduct 

valid tests of hypotheses for the style weights of Sharpe’s effective mix and, particularly, for testing for 

shifts in manager style. 

Applying Andrews’s (1997a, 1997b, 1999, 2000) methods, one can show under the null that for 

the general case, 

 

−−Γ′− − )~()~( 1 rRrRT TT ββ TT RR λλ ~ ~ 1−Γ′′  
p
→  0, 

 

where 
p
→  denotes convergence in probability, Γ  is a given k k× non-singular matrix,1 and ~

λT  is a 

k ×1 random vector whose asymptotic distribution can be straightforwardly characterized and well 

approximated. This implies that the asymptotic distribution of TT RR λλ ~ ~ 1−Γ′′  is also well approximated. 

The asymptotic equivalence lemma (e.g., Lemma 4.7 in White, 1984) implies that the computable 

statistic )~()~( 1 rRrRT TT −Γ′− − ββ  has the same distribution as TT RR λλ ~ ~ 1−Γ′′  asymptotically, from 

which we can construct p-values for testing the null, R rβ * .=  

Andrews ’ s (1997a, 1997b, 1999, 2000) results imply that for the generic case with 

,0,1 ≥=′ ββι  the crucial random vector ~
λT  is the solution to the following problem: 

 

min
λ

 ˆ ˆ ˆ( ) ( ),T T TZ M Zλ λ′− −                                                                                                     (2.2) 

s t. .     ι λ λ' ,= ≤0 0Q         

                                                 
1 The weighting matrix Γ  is not necessarily deterministic. We can allow Γ to be a random matrix (denoted by 

~ΓT ), which 
depends on both data and sample size as long as it converges in probability to a non-stochastic, positive-definite matrix. A 
common example for 

~ΓT  is given by ,T TRD R′Γ =   where 
~ ~ ~ ~D M V MT T T T= − −1 1  and 

~MT , 
~VT  are defined later. One can 

show that 
~ΓT   converges to a non-stochastic, positive-definite matrix in probability. This particular weighting matrix is 

known to be the optimal weighting matrix in the case without non-negativity and sum-to-one restrictions. In the present 
analysis, this choice is not known to be optimal. Finding an optimal weighting matrix in this case to maximize power would 
be an interesting issue, which we leave for future research. 
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where ∑
=

− ′≡
T

t
ttT XXTM

1

1ˆ ,   Z M GT T T≡ −1 , GT  is a k ×1  multivariate normal random vector, GT ∼ 

N ( ,0 VT ), ∑
=

− ′′≡
T

t
ttttT XXTV

1

1 ~~ˆ εε , Tttt Xy βε ~~ ′−≡ , and Q qij= [ ]  is a matrix identifying the elements of 

β *  that are “known” to satisfy the boundary condition, β j
* .= 0  

The matrix Q  has l rows (one for each element of β *  “known” to be zero) and k  columns (one 

for each element of β * ). The elements qij  of Q  are zero, except when the ith “zeroed” element of β *  

has index j,  in which case qij  = -1. Fortunately, we are not required to have exact a priori knowledge 

about which elements of β *  are zero. We can acquire this knowledge by running a preliminary 

unconstrained least squares regression and identifying elements β j
*  satisfying the boundary condition 

as those whose associated t − statistics are insignificant (at a level tending to zero as T → ∞ ). 

Because we can compute a large number (denoted by N ) of Monte Carlo realizations of ~
λT  by 

solving (2.2) for a large number of realizations of GT , we can build up a Monte Carlo estimate of the 

distribution of TT RR λλ ~~ 1−Γ′′  and therefore of our test statistic 1( ) ( ).T TT R r R rβ β−′− Γ −  Comparing 

)~()~( 1 rRrRT TT −Γ′− − ββ  with the quantiles of TT RR λλ ~~ 1−Γ′′  yields the desired p-value. 

To test specifically for style shifts, we replace R rT
~
β −  with S T T T

~ ~ ~
β β β= −1 2  and R T

~λ  with 
~ ~λ λ1 2T T− , where now ~λT  = )~,~( 21 ′′′ TT λλ  solves the problem: 

 

min
λ

 ( ) ( ),T T TZ M Zλ λ′− −                                                                                                       (2.3) 

s t. .     0~,0,0 21 ≤=′=′ λλιλι Q ,                                  

 

where ∑
=

− ′≡
T

t
ttT XXTM

1

1 ~~~ , ~ ~ ~Z M GT T T≡ −1 , ~GT  is a 2 1k ×  multivariate normal random vector ~GT ∼ 

N ( ,0 ~VT ), ∑
=

− ′′≡
T

t
ttttT XXTV

1

1 ~~~~~ εε , Tttt Xy βε ~~~ ′−≡ , and ~Q  = [ ~qij ], where ~qij  = -1 if the ith zeroed 

element of =*β  









*
2

*
1

β

β
 has index j , and ~qij  = 0 otherwise. 
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 Thus, to implement our “Style Chow Test” for testing whether or not fund style shifted at a 

specified time index Tτ , we proceed as follows. 

1)  Compute the Style Chow Test statistic CT ( )τ  = 1
1 2 1 2( ) ( ),T T T TT β β β β−′− Γ −     where T1

~β  and T2
~β  

solve (2.1).  

2)  Run an unconstrained (e.g., OLS) version of (2.1) to identify elements of β *  to be set to zero, 

and form ~Q  accordingly. 

3)  Construct a large number ( N ) of Monte Carlo draws for ~GT based on the results of step 1). 

4)  Solve (2.3) for the Monte Carlo draws of step 3) using ~Q  as identified in step 2). 

5)  Obtain the p-value for the Style Chow Test as the area to the right of the Style Chow Test 

statistic CT ( )τ in the Monte Carlo distribution constructed in step 4). 

 

3. Style Shifts at an Unknown Point 
 

In application, we often lack prior knowledge of the exact break location. Instead, we may only know 

that the break might have occurred within a specific time interval, say ],,[ 21 TT ττ  where τ1  is the 

earliest time index at which a break may have occurred, and τ2  is the latest. 

In this situation, we propose using the “Maximum Style Chow Test” defined as 

 

CT
1 2[ , ]

max ( ),Tτ τ τ
τ

∈
≡ C  

 

where CT ( )τ  is as defined in the previous section. The asymptotic distribution of CT  is approximated 

by a Monte Carlo procedure that nests steps 1) - 4) in a loop withτ  running from τ1  through τ2  to 

produce a (τ2  -τ1  + 1) × N  matrix of ~
λT  values solving (2.3) with elements ~ ( , )λ τT i , τ  = τ1 ,…,τ2 ; 

i = 1,…, N .  From these, form the statistics 

 
~ ( , )ω τT i = ),,(~)(),(~ 1 iRRi TT τλττλ −Γ′′  

 

where the possible dependence of Γ  on τ  has been made explicit. Next, for each i  = 1, …, N ,  

compute 
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~ ( ) max ~ ( , )*

{ ,... , }
ω ω τ

τ τ τT Ti i≡
∈ 1 2

. 

 

Finally, obtain the p-value for the Maximum Style Chow Test as the area to the right of CT  in the 

distribution of the ~ ( )*ωT i . 

 

4. Testing for Multiple Shifts 
 

In practice, fund style shifts may occur at several points in time, not just once. For multiple shifts in 

style, one may do not know when or how often shifts may have occurred. We discuss these possibilities 

in this section.  

     The first case, multiple shifts at known points, is a straightforward extension of the single known 

shift point case of Section 2. To illustrate, suppose shifts are suspected to have occurred at periodsτ1  

andτ2 . The style regression is 

 

,~~~ *
33

*
22

*
11 ttttt XXXy εβββ +′+′+′=  

 

where tX 1
~  is a k ×1 vector containing the style indices for t = 1,…, ,1Tτ  and zero otherwise; tX 2

~  is a 

k ×1 vector containing the style indices for t = 11 +Tτ ,…, ,2Tτ  and zero otherwise; and tX 3
~  is a k ×1 

vector containing the style indices for t = 12 +Tτ ,…, T ,  and zero otherwise. The null of no style shift 

is that β β β1 2 3
* * * ,= =  which can be expressed as 

 

H S0 2 0: *β = , 

 

where =*β  
















 *
3

*
2

*
1

β

β

β

 and S
I I

I Ik k

k k

k k
2

2 3

0
0×

=
−

−








 . The solution to style regression estimate ~

βT  is obtained 

from the following constrained regression: 

 

          min
, ,β β β1 2 3

 1 2
1 1 2 2 3 3

1
( ) ,

T

t t t t
t

T y X X Xβ β β−

=

′ ′ ′− − −∑                                     
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            s t. .       
1 1

1, 0,ι β β′ = ≥  

                        
2 2

1, 0,ι β β′ = ≥  

                        
3 3

1, 0.ι β β′ = ≥  

 

The Style Chow Statistic is given by 

 

CT ( , )τ τ1 2  = TT SST ββ ~)~( 2
1

2
−Γ′ . 

 

Critical values for CT ( , )τ τ1 2  are generated in a manner analogous to those for the single shift case, that 

is, from the histogram of TT SST λλ ~)~( 2
1

2
−Γ′ , where ~λT  solves 

 

          min
λ

 ( ) ( ),T T TZ M Zλ λ′− −         

            s t. .   ,0~,0,0,0 321 ≤=′=′=′ λλιλιλι Q  

 

where ),,( 321 ′′′′= λλλλ  and ~MT , ~ZT , and ~Q  are constructed in the obvious way. 

As with any test of structural shifts, we note that a statistically significant result may be 

observed in the presence of shifts that do not occur at the specified points. Rejecting the null of no shift 

against the alternative of a shift at specific points does not justify the conclusion that shifts did indeed 

occur at the hypothesized shift points. In addition, note that when testing two shifts, a statistically 

significant result may be observed even if there is in fact only one shift. There need not be two, and the 

CT  statistic does not tell us which suspected shift (if either) is responsible for rejecting the null. 

Because prior knowledge of the style shift location is often vague, it is helpful to have 

procedures that can identify one or more style shift locations when these are unknown. Bai (1997) 

proposed a useful procedure for the standard case (no inequality restriction) that can be readily adapted 

to the present case. Bai’s multiple shift identification procedure has the following steps. 

 

1)  Identify the first apparent shift as occurring where the Chow Statistic is highest. 

2)  Test whether the shift is “real” by comparing the Maximum Chow Statistic to its critical value. 

3)  If the shift is not statistically significant, stop. 

4)  If the shift is significant, split the sample into two sub-samples: before and after the shift. 
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5)  Apply the Maximum Chow Test within each sub-sample to identify further shifts – that is, 

repeat steps 1) - 4) in each sub-sample. 

6)  Continue until no sub-sample Maximum Chow Statistic is significant. 

 

To adapt Bai’s procedure to the present contest, we simply replace the standard Maximum Chow 

Statistic with the Maximum Style Chow Statistic. 

 

5. Empirical Illustration 
 

Here, we apply the proposed method to real data to demonstrate how structural breaks in manager style 

can be detected. Specifically, we show how the management style in the Fidelity Magellen Fund (FMF) 

was structurally changed. The fund is US-domiciled and well known for its active management. The 

sample period is January 1988 through December 2017 and includes 360 monthly observations. We use 

the Russell indices (Russell 2000 growth, Russell 2000 value, Russell 1000 growth, and Russell 1000 

value) as explanatory variables. Table 1 shows relevant summary statistics of the variables.2 

Some relevant break statistics from our procedure when applied to the whole sample period 

(1988.01 - 2017.12) are shown in Table 2. We set the number of Monte Carlo replications for linear-

quadratic optimization to be 1,000 in all computations. To avoid instability in estimation, we ensure 

that the number of observations in both initial and final estimation windows is at least 30; that is, 

301 =Tτ  and 
2

(1 ) 30Tτ− = . The Maximum Style Chow statistic obtained from the whole sample 

period is 17.38 with p-value close to zero (0.002) and the estimated break date is March 1992, 

suggesting that there are two style regimes before and after the break date. How the management style 

shifted between these two regimes is shown in Table 2, under the headings “Regime 1” and “Regime 

2.” The results indicate the clear shift into large cap, away from heavy value orientation. During the 

first regime, no weight is given to growth stocks, and all funds are invested on small cap value (47%) 

and large cap value (53%). However, a noticeable change occurs around the break date; all funds are 

withdrawn from small cap stocks and distributed over large cap growth (60%) and large cap value 

(40%). 

Since the break (March 1992) is statistically significant, we can split the sample into two sub-

samples to search for possible multiple breaks. However, the resulting first sub-sample (1988.01 – 

                                                 
2  All data supporting the findings of this study have been downloaded from Yahoo Finance 
(https://finance.yahoo.com/quote/FMAGX/history?p=FMAGX) and are also available from the corresponding author (T.-H. 
Kim) upon request. 

https://finance.yahoo.com/quote/FMAGX/history?p=FMAGX
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1992.03 with 51 observations) is too small to be subject to the grid search for possible additional breaks. 

Hence, we do not analyze it further. In contrast, the second sub-sample (1992.04 - 2017.12 with 309 

observations) is sufficiently long to compute the relevant break statistics.  

The estimation results are shown in Table 3. The Maximum Style Chow statistic is 10.06 with 

p-value close to zero (0.019) and the estimated break date is October 2002, which indicates the 

presence of two further regimes (denoted “Regime 2-1” for the sub-period of 1992.04 - 2002.10 and 

“Regime 2-2” for 2002.11 - 2017.12). The estimated style weights show a clear shift into growth stocks 

away from large cap orientation (50% on Russell 1000 Growth and 50% on Russell 1000 Value). A 

rather noticeably large weight (87%) is placed on Russell 1000 growth during Regime 2-2.     

The sub-regimes, Regime 2-1 and Regime 2-2, have 127 and 182 observations, respectively. 

Hence, we further applied the proposed method to each sub-regime in search of additional breaks. 

However, no more structural breaks in style are found in both sub-regimes.  

 

6. Conclusion 
 

A fund manager’s style can change, shifting from one position to another at a point of time. No formal 

method for testing whether changes in manager style has existed when the standard two restrictions 

(sum-to-one and non-negativity) are jointly imposed in style analysis. Combining the well-known 

Chow test and the results of Andrews (1997a, 1997b, 1999, 2000), we developed a formal test for shifts 

in manager style. Our testing procedure is general in that the potential change-point is not assumed to 

be known, and the case of multiple shifts is entertained. Application of our proposed test to the FMF 

revealed that the fund’s style changed at least twice between 1988 and 2017. 
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Table 1. Summary Statistics for Fidelity Magellan Fund (percent return) 

Statistics  Sample period: 1988.01 - 2017.12  

(360 monthly observations) 

   fidelity r2growth    r2value r1growth    r1value 

Mean 0.83  0.66  0.73  0.70  0.62  

Median 1.15  1.44  1.36  1.12  1.10  

Maximum 20.69  21.71  19.43  16.52  15.38  

Minimum -26.43  -24.49  -26.53  -18.64  -20.12  

Std. Dev. 5.37  6.53  5.29  4.83  4.34  

Skewness -0.31  -0.62  -0.99  -0.71  -0.96  

Kurtosis 3.66  1.43  3.88  2.14  3.76  

Correlation       

fidelity 1.00     

r2growth 0.65 1.00    

r2value 0.62 0.86 1.00   

r1growth 0.73 0.84 0.72 1.00  

r1value 0.70 0.72 0.86 0.81 1.00 
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Table 2. Break Statistics with Fidelity Magellan Fund 

 Whole Sample Period: 

1988.01 - 2017.12 

(360 observations) 

Break Date 1992.03 

Max Style Chow Statistic 17.38 

P-Value 0.002 

Style Regression  

Regime 1  1988.01 - 1992.03 

(51 observations) 

Russell 2000 Growth 0.00 (0.14)  

                  Russell 2000 Value 0.47 (0.16)  

                  Russell 1000 Growth 0.00 (0.05)  

                  Russell 1000 Value 0.53 (0.06)  

Regime 2 1992.04 - 2017.12 

(309 observations) 

Russell 2000 Growth 0.00 (0.03)  

                  Russell 2000 Value 0.00 (0.03)  

                  Russell 1000 Growth 0.60 (0.07)  

                  Russell 1000 Value 0.40 (0.07)  

Note that standard errors are parentheses. 
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Table 3. Multiple Break Statistics with Fidelity Magellan Fund 

(whole sample period: 1986.10 – 2014.01) 

 Sample Period subject to Search: 

1992.04 - 2017.12 

(309 observations) 

Break Date 2002.10 

Max Style Chow Statistic 10.06 

P-Value 0.019 

Style Regression  

Regime 2-1  1992.04 - 2002.10 

(127 observations) 

Russell 2000 Growth 0.00 (0.03)  

                  Russell 2000 Value 0.00 (0.04)  

                  Russell 1000 Growth 0.50 (0.07)  

                  Russell 1000 Value 0.50 (0.07)  

Regime 2-2 2002.11 - 2017.12 

(182 observations) 

Russell 2000 Growth 0.13 (0.19)  

                  Russell 2000 Value 0.00 (0.17)  

                  Russell 1000 Growth 0.87 (0.19)  

                  Russell 1000 Value 0.00 (0.18)  

Note that standard errors are parentheses. 
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