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Abstract

Offense-defense theory argues that conflict and war are more likely when
offense has the advantage over defense. This paper explores how the prime hy-
potheses in offense-defense theory can be challenged when it comes to making
predictions about conflicts or terrorism caused by revisionist states. To do so,
I propose a model of a continuous time conflict game between two asymmetric
states, in which a status quo state develops defensive technology and a revi-
sionist state develops offensive technology, with incomplete information on the
revisionist state’s militancy level. The equilibrium analysis shows that the risk
of terrorism is maximized when the overall offense-defense balance is relatively
even. This paper suggests an alternative framework in explaining asymmetric
conflicts in the contemporary context, and provides insights into understanding
the likelihood of terrorism.

Keywords: military technology; offense-defense balance; conflict; terrorism.

Word count: 9877

∗School of Economics, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Republic of
Korea (email: shiningjin@gmail.com).

1



Introduction

In a series of influential articles on international relations, offense-defense theory has

become the most powerful and useful neorealist theory on the causes of war, and

it has accomplished a lot of explanatory and theoretical work for decades.1 Many

neorealist scholars have noted the likelihood of war is powerfully affected by changes

in technology. Military technologies can influence decisions for or against war, and

depending on whether the ‘offense’ or ‘defense’ has the edge, states will choose to use

forces against the status quo.

Offense-defense theory conceptualizes the offense-defense balance by examining

the comparative statics of changes in the relative efficacy of offensive and defensive

fighting technologies in models of conflict. More formally, advantage refers to a dif-

ference between the relative expected value or utility of attacking versus defending,

holding other factors constant. Any technological factor that tends to increase the

difference shifts the offense-defense balance towards the offense. In international re-

lations scholarship and foreign policy analysis, the offense-defense balance has been

used pervasively to explain international outcomes, especially the occurrence of vio-

lent conflict and the likelihood of interstate war.

Among prominent conjectures that offense-defense theorists contend about the

causes of violent conflict and war, one of the far-reaching claims that Jervis (1978)

initiated and Van Evera (1998) explicated is that offensive advantages exacerbate the

security dilemma, making wars more likely in periods when the offense is dominant

than in other periods.2 In another exposition of offense-defense theory, Fearon (1997)

disputed the claim, arguing instead that greater offensive advantages may have coun-

tervailing effects on the probability of war and thus, yield the possibility of peace.
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The vast bulk of the literature on conflicts still tends to focus on the historical

and empirical assessments of specific wars and patterns of warfare in history between

great powers. However, conventional interstate wars between great powers ended in

the aftermath of the Cold War, and many new forms of conflicts beyond the full

control of nation-states have emerged. In particular, terrorism, whether it is fed by

religious fundamentalism or not, has become a serious threat in international society.3

The hallmark of terrorism is the effective wielding of force by a weak contender against

an opponent that is far superior in conventional military power. But the fact that

terrorists do not fight on clear fronts and do not play according to the rules of war

makes struggling with terrorism extremely difficult.

Scholars have tried to employ offense-defense theory to explain a wide array of

political relations in the post-Cold War era, including nuclear strategy, arms races,

deterrence, and ethnic conflict. Yet, the literature lacks rigorous formal theory, such

as the perspective of game theory or rational choice analysis, to explain terrorism

caused by revisionist states.4 Therefore, a comprehensive theoretical analysis of the

conflicts between a revisionist state and a status quo state is needed. My interest

is in understanding the conflicts between these asymmetric states and the likelihood

of terrorism through a game-theoretic model of the wedge between offensive versus

defensive technology; and in exploring how the conventional hypotheses in offense-

defense theory can be challenged when applied to such asymmetric conflicts in the

contemporary context.5

In particular, I study the offense-defense balance in a continuous time model of

conflict between a large state and a small state. The large state (A) is a status quo

power and at each instant in time can either attack or continue. The small state (B)

is a provocateur with private information on its militancy level, and at each instant

can attack, back down, or continue. The game ends in war by either side’s attack, or
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ends in capitulation of B by B’s back down. If both states continue, the conflict game

continues in stalemate. The B’s continue strategy can represent threats of terrorism

by provocative military actions without an explicit attack.6

The offense-defense balance is understood as the technological advantages of at-

tacking versus being attacked, conditional on a war occurring. I allow for differences

in these technologies across the two states: The A develops defensive technology and

B develops offensive technology over time. This assumption is the key source for

asymmetry between states. In particular, A can be thought of as a pacifist, limiting

the use of military technology to defense, while the provocateur B actively uses force

to change situations of which it disapproves.7

I obtain two main theoretical results on the equilibria set of my model: (1) In any

equilibrium, there exists a unique finite duration of stalemate–a level of continuation

after which B is not expected to back down; and (2) in equilibrium, A chooses to

attack right after the duration, while B will continue up to the duration and attack

if and only if her privately known militancy level is sufficiently large, and will back

down on or before the duration with some probability distribution if and only if her

privately known militancy level is relatively low.

The results of my model suggest surprising reversals of the classical hypotheses

produced by offense-defense theory that war is more likely in offense-dominant eras,

as well as the argument of Fearon (1997) that greater offensive advantages may make

states favor peace more. First, in my setting, terrorism is most likely in periods

when the system has relatively even offense-defense balance than in other periods.

More precisely, offensive or defensive advantages are not decisive in determining the

likelihood of war over stalemate or peace. Second, greater offensive advantages never

increase a state’s inclination toward peace.

The existing literature, focused as it is on models of conflict between symmetric
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states, has never suggested that an even offense-defense balance might maximize the

risk of war. As my model offers an interesting departure that yields new conjectures,

this paper thereby calls for a theoretical refinement of offense-defense theory in terms

of understanding the contests between large status quo and small revisionist states

that today fuel terrorism and stalemate.

The Model

My model presented here is a variant of Fearon’s (1995) model; hence some termi-

nologies and derivations are adopted from his paper. Consider a conflict game in

which two asymmetric states, a status quo A (‘he’) and a revisionist B (‘she’), are

involved in a conflict.8 The conflict occurs in continuous time, starting at t = 0. For

every finite t ≥ 0, A can choose whether to attack or continue, and B can choose

to attack, back down, or continue. The conflict ends when A attacks, B attacks or

B backs down. When the conflict ends, it is the end of strategic interactions. The

conflict is said to be in stalemate when both sides continue.

At every instant of time t ≥ 0, A has defensive capability of size mA(t) and

B has offensive capability of size mB(t). Functional forms of mi(t), i = A,B, are

common and public knowledge. Also, mA(t) and mB(t) are continuous and strictly

increasing functions of the amount of continuation with mi(0) = 0.9 I consider the

linear cases, mA(t) = πt and mB(t) = µt, where π and µ are parameters indicating

how rapidly continuation strengthens military capabilities for each state. Let π > 0

be A’s defensiveness, or value for peace, which is common knowledge. Let µ > 0 be

B’s offensiveness, or militancy level, which is private information.

At the outset of the game, µ is chosen by nature and B learns her own true

militancy level. The A knows only the distribution of B’s militancy level. He believes
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that µ is drawn from a nonatomic distribution over the interval M = [0, µ̄], µ̄ > 0,

according to a cumulative distribution function F that has continuous and strictly

positive density f . The density f represents A’s prior beliefs about B’s militancy

level.

Given the above parameters and information structure, increasing capability im-

poses a technological cost of being attacked to A, and a technological benefit of

attacking to B, if there is a continuation of conflict ended by B’s attack. That is,

when B attacks, A suffers a cost from his defensive capability being destroyed by B’s

larger offensive capability, as offensive capability caused by stalemate has accumu-

lated more, while B benefits from her offensive capability. Thus, military technology

can be interpreted as martial effectiveness, or continuation value (benefit or cost) of

stalemate from technology.

If B attacks at t, the military technology yields a time-contingent benefit mB(t)

to B and a time-contingent cost mA(t) to A. In the linear case that I focus on, µ

indicates how rapidly continuation creates benefit for B and π indicates how rapidly

continuation creates cost for A. Each A and B suffers additional fixed military costs

of dA > 0 and dB > 0, respectively.10 If A attacks at t, A suffers a cost cA > 0 and B

suffers a cost cB > 0.

Payoffs are realized only when the conflict ends, given as follows. If A attacks at

t, two states receive their expected payoffs −cA for A and −cB for B. If B backs down

at t, payoffs are −s for A and s for B, where s ≥ 0. This s can be interpreted as A’s

offer of a surplus to B in return for B backing down and terminating the conflict. If B

attacks at t, two states receive expected payoffs −mA(t)−dA for A and mB(t)−dB for

B. Note that the asymmetry plays out only when an attack is instigated by B, who

benefits from being an attacker and incurs cost to A for being attacked. The game

tree illustrated in Figure 1 depicts the structure of the game, with payoffs indicated
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in the cases that A attacks first at t
′

and B attacks or backs down first at t
′′
.

Figure 1: The game tree

For A to find it in his interest to not attack at t = 0, it must be s < cA. Also, B

will respond to A’s offer s only if the offer is credible, so A’s offer must not exceed

his cost when B attacks, i.e. s < πt + dA for all t; so, s < dA. The restrictions on

the fixed costs A and B suffer when A attacks are cB > dB and cA > dA.11 I take

attacking to be inefficient, so that π ≥ µ̄. With these parameter restrictions, I study

perfect Bayesian equilibrium. The formal statement of the solution concept is given

in Appendix A.

Main Results

I begin by introducing an informal description of the complete information case, in

which A knows B’s militancy level with certainty. I have omitted a discount factor to

make the analysis more tractable, focusing on the independent effects of the wedge

between offensive and defensive capability over time in continuation of a conflict game.

If A knew B’s level of militancy, he could look ahead and anticipate what would

happen if B were to continue and create a stalemate. That is, A would see that
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ultimately the benefit for B from increasing offensive capability, regardless of B’s

militancy level, would be so large that B would in effect commit herself not back

down after some point, say t
′
µ.12 Anticipating this at the outset, a rational A would

use a strategy of ‘continue up to t
′
µ and attack for t > t

′
µ’ to prevent himself from

paying the larger costs that would go with continuation.13 Knowing this, a rational B

would back down immediately, because the best she could do is to back down before

t
′
µ. The game ends in peace, with B backing down and having no incentive to launch

a conflict game at the outset, and no conflict would occur.

With complete information, a provocateur will have to settle immediately rather

than suffer costs from a status quo state’s preventive attack. I can now ask, if B’s

militancy level is unknown to A and if it were known that B with higher militancy

level preferred continuing to ending the conflict, should B with lower militancy level

necessarily back down immediately?

Equilibria under Incomplete Information

I now consider equilibria of my model in which B has private information about

her militancy level. With preliminary results and all proofs given in Appendix B, I

provide the following theoretical results.

First, I establish the existence of a unique finite duration of stalemate—a level of

continuation after which B is not expected to back down and thus war is certain—in

some equilibrium in which a conflict may occur.

Proposition 1. Let t∗ be such that −πt∗ − dA = −cA. In any equilibrium where A

believes B will attack at some t with positive probability, there exists a unique finite

duration of stalemate t∗.

Proposition 1 shows that if a finite duration of stalemate exists, then it is uniquely
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defined as t∗ = cA−dA
π

. This result guarantees that A is willing to attack after t = t∗

as a preventive measure to end the conflict.

Proposition 2 characterizes the set of pure strategy equilibria in the incomplete

information conflict game in which a finite duration of stalemate occurs.14

Proposition 2. Let the unique finite duration of stalemate be t∗ = cA−dA
π

. The

following describes the set of equilibrium strategies for A and equilibrium strategies

for B as a function of µ:

(i) A plays {attack}tA for t > t∗.

(iia) For µ ≥ s+dB
t∗

, B plays {attack}tB at t = t∗.

(iib) For µ < s+dB
t∗

, B plays {backdown}tB for any t ≤ t∗.

The belief system in equilibrium is given as follows:

(iii) For t ≤ t∗, A believes that the probability B will not back down is 1−F
(
s+dB
t∗

)
.

(iv) For any t > t∗ off-the-equilibrium path, A believes that B has µ > s+dB
t∗

and is

distributed according to F truncated at s+dB
t∗

.

Proposition 2 asserts that there is a set of equilibria, where A’s optimal strategy

would be to attack right after t∗ and B’s optimal strategy would be to attack at

t∗ if she has a high enough militancy level, or to back down on or before t∗ with

some positive probability if she has a lower militancy level. The interpretation of

these strategies is as follows. The status quo state will not strike first to disarm a

revisionist state prior to some fixed duration of stalemate, because there is a chance

that the revisionist state might react by backing down. The status quo state with

defensive objectives, however, believes that if he does not attack after that time, his

enemy will do so, forcing destructive war upon them on less favorable terms and at
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higher costs. Thus, he commits himself to attack for sure right after the duration. If

the revisionist state is very aggressive (high µ), then she will continue stalemate up

to the duration and attack at the very moment the duration is reached; while if the

revisionist state is not so aggressive (low µ), she will back down, ending the conflict

on or before the duration with positive probability.

Note that in any equilibrium in which conflict occurs, the probability distribution

on equilibrium outcomes is indeterminate up to the duration t∗.15 That is, on or

before t∗, B may choose any time to back down, because the payoff structure leaves

this open by not incorporating any incentives for either an immediate back down

or prolonged stalemate. Hence, up to the duration t∗, stalemate may continue, and

once war seems likely (i.e. t∗ is reached), there are strong pressures to pre-empt an

attack. Each side knows the other sees the situation the same way, thus increasing

the perceived danger that the other would attack, and giving each added reasons to

precipitate an attack if conditions seem favorable.

Illustrative Example

A comparative statics analysis of the equilibrium characterized in Proposition 2 yields

theoretical insights into how the slopes of military technology matter in equilibrium

behavior and affect conflict outcomes. A striking feature is that player A who pos-

sesses lower defensiveness is more likely to endure longer duration of stalemate because

t∗ proves to rise as π falls. On the other hand, player A with very large defensiveness

would commit to strike first early, inducing equilibrium behavior of B to be more

likely to back down prior to the duration of stalemate.

Intuition can justify the opposite prediction. One might think that an A who val-

ues peace less would fear conflict less and strike first faster. But this argument misses
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the point that the cost of being attacked by the adversary, generated by increasing de-

fensive technology, rises more slowly. While such an A may not fear attack, if he does

choose to continue the conflict, the lesser costs created by lower value for peace mean

that he is more likely to be patient with stalemate, conditional on having started a

conflict. Therefore, as A endures a longer duration of stalemate, B would then be

less inclined to back down prior to the duration. Figure 2 illustrates the duration

of stalemate and the prior probabilities of B’s equilibrium strategies in terms of A’s

defensiveness.

As can be seen from Figure 2, as A’s defensiveness π increases, he has fewer

expected periods of waiting and the risk of war decreases. Formally, the probability

that B will back down prior to the duration of stalemate t∗ is F
(
s+dB
t∗

)
, which increases

in π; and the probability that B will attack at t∗ is 1− F
(
s+dB
t∗

)
, which decreases in

π. If A’s value for peace is lower, then B is less likely to back down than when facing

A with higher value for peace. This result holds regardless of the surplus amount

and fixed costs of attack, and regardless of A’s initial belief about B. Thus, when

the status quo state’s desire for preserving peace for its own sake is not that great,

the revisionist states would back down less often compared to when the revisionist

faces a very peace-loving status quo state. Conversely, A with lower value for peace

will face higher probability that B will attack at a larger t∗, conditional on a conflict

occurring.

The comparative statics of how A’s defensiveness matter on the duration of stale-

mate in the equilibrium has two implications. First, a high value of defensiveness

helps the status quo state, by making the revisionist state more likely to shy away

from conflicts and more likely to back down once in them. That is, the risk of war

given a conflict decreases as π increases above µ̄.

Second, as the expected duration of stalemate decreases with π, conflicts between
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Figure 2: Comparative statics in terms of A’s defensiveness

Notes: Parameter values for computation are s = 1, cA = 20, dA = 5, and dB = 2. The µ is
drawn according to a uniform distribution F over the interval M = [0, 1]. By the parameter
restriction π ≥ µ̄, the range of π starts from one.
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a revisionist state and a more peace-loving status quo state should see significantly

fewer periods of standoff than conflicts between a revisionist state and a less peace-

loving status quo state.16 In the model, A’s ex ante expected payoff for continuing

up to t∗ decreases with its defensiveness π. This result provides a rationale for why,

ex ante, a status quo state with higher defensiveness would want to strike first earlier

in international conflicts, even though that might intuitively force wars upon them

sooner (but with lower probability). That is, A’s higher defensiveness implies that

A is more stalemate-averse and more determined to pre-empt an attack in order to

terminate the conflict in the first place.

The Offense-Defense Balance Revisited

Offense-defense theorists have made arguments about war and peace that remain

conventional premises in international relations. Among those, Jervis (1978) and

Van Evera (1998) developed the commonly accepted hypothesis that offensive advan-

tages make wars more likely. On the other hand, Fearon (1997) argued that greater

offensive advantages may have conflicting effects, one of which works against war.17

In this section, I provide paradoxical results against these arguments. I begin by

defining the overall offense-defense balance in my context.

An Overall Offense-Defense Balance

Jervis (1978) insists that military factors are the primary causes of offense and defense

dominance.18 Then the offense-defense balance can be understood as the military

technological advantages of attacking versus being attacked. More formally, advantage

refers to a difference between the relative expected benefits and costs of attacking
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versus being attacked, holding other factors constant. Any technological factor that

increases the difference tips the offense-defense balance towards the offense.

Then, for a particular state, the offense-defense balance is said to be ‘even’ when

the difference is, or is relatively near, zero; the defense has the advantage, or defense

dominance, when the difference is negative; and the offense has the advantage, or

offense dominance, when the difference is positive. Also, a larger difference above

zero indicates a balance more in favor of offense and the greater aggressor’s prospects

for value of offense. This measure of balance is defined for a particular state, which

Glaser and Kaufmann (1998) call directional balance.

Motivated by how the use of military technology differs between large versus small

countries, I assumed in my model that two states face asymmetric opportunities: A

small revisionist state strengthens offensive technology while a big status quo state

strengthens its defensive technology over time. Then, I can gauge the impact of

increasing offensive and defensive technology on the direction of change in the offense-

defense balance for a particular state, holding all other factors constant. In my model,

increasing defensive technology over time for a status quo state increases the difference

between the relative expected utility of attacking versus being attacked (defending),

which equals [−cA]− [−πt− dA]. The directional offense-defense balance for a status

quo state starts from negative, reaches a point where it equals zero, and then increases

over zero. This implies that a status quo state has defense dominance at first, an even

offense-defense balance at some later point, and then offense dominance over time.

Similarly, increasing offensive technology for a revisionist state also increases the

difference between the relative expected utility of attacking versus being attacked,

which equals [E(µ)t− dB] − [−cB]. As the directional offense-defense balance for a

revisionist state starts from being positive, a revisionist’s offense dominance grows

much stronger over time.
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Combining two directional offense-defense balances for each state, I define, in a

two-state system, an overall offense-defense balance to be an arithmetic product of

the two balances.19 Then, when the defense has the advantage for the status quo

state, the product is less than zero, and thus, the overall offense-defense balance

favors the defense. That is, the defense is dominant system-wide. In this case, I say

that the revisionist state has relatively mild offense dominance over the course of

time. When the offense-defense balance is even for the status quo state, the product

is equal to zero, and thus, the overall offense-defense balance is even system-wide

and the revisionist state’s offense dominance is referred to as being moderate. If the

product is greater than zero, i.e. when the offense is dominant for both states, then

the offense has greater system-wide advantage, which corresponds to strong offense

dominance for the revisionist state.

Equilibrium Analysis

Based on the definition of the overall balance given above, I now elaborate on the

likelihoods of stalemate and peace, and the risk of war in equilibrium.

In equilibrium, war only occurs at t∗ with probability of 1 − F
(
s+dB
t∗

)
, the ex

ante pre-conflict probability that the revisionist state will choose to attack. If war

actually occurs, then the war occurs for sure only at t∗ = cA−dA
π

. That is, when the

war occurs, the offense-defense balance is exactly even for the status quo state, while

the revisionist has a mild offensive advantage.20 Also, in equilibrium, peace occurs

on or before t∗ with positive probability of F
(
s+dB
t∗

)
, while peace is impossible after

t∗. That is, when peace occurs, it is only when the defense has the advantage for the

status quo state and offensive advantage for the revisionist state is mild. In addition,

before t∗ when the defense dominates for the status quo state, stalemates are more
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surely likely than wars.

In other words, in any equilibrium, the risk of war is positive only when the

overall offense-defense balance is even, while the likelihood of peace, equivalently the

likelihood of stalemate, is positive only when the overall offense-defense balance favors

the defense. Thus, this result implies that war by a revisionist state, or terrorism, is

most likely at a point when the overall offense-defense balance is relatively even than

in any other periods; when the defense is system-wide dominant before t∗, stalemates

may happen; and, greater offensive advantages never make states favor peace more.

Figure 3 shows the likelihood of stalemate/peace and war over time given t∗ as the

duration in equilibrium.

New Conjectures

The equilibrium analysis implies new conjectures contradicting the salient predictions

about war and peace in offense-defense theory. Figure 4 associates the likelihoods of

peace, stalemate, and war to the offense-defense balance in continuation of a conflict

between asymmetric states.

First, an even overall offense-defense balance makes wars by revisionist states

most likely. The revisionist state develops offensive capabilities because they have

aggressive aims unrelated to their security requirements. These capabilities raise

the risk of war, but when wars actually occur, they do not stem principally from

offense dominance. My first conjecture is a surprising reversal of the basic prediction

that war is far more common in periods when the offense-defense balance favors

the offense. More precisely, when wars are more likely, I cannot conclude whether

the offense is dominant or the defense is dominant. The fact that I cannot find a

significant association between the offense-defense balance and the likelihood of war
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Figure 3: The likelihoods of stalemate/peace and war in equilibrium

Notes: Parameter values for computation are the same as in Figure 2.
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Figure 4: The offense-defense balance and the likelihoods of peace, stalemate, and
war

runs counter to offense-defense theorists’ common-sense assumption.

Second, greater offensive advantages over time never increase states’ inclination

toward peace. In other words, increasing offensive advantages over time do not have

conflicting effects on the risk of war. There is a positive likelihood of peace preceded by

a finite duration of stalemate only within the range of periods when the overall offense-

defense balance favors the defense. My second conjecture refutes Fearon (1997)’s

argument that offensive advantages may have conflicting effects on the likelihood of

war and thus greater offensive advantages may make states more receptive to peace.

My conjectures imply that offense-defense theory may overstate the association

between the offense-defense balance and the occurrence of violent conflicts in making

predictions about conflicts involving transnational terrorist groups. On that account,

I insist that the offense-defense balance is not the best predictor of the risk of ter-

rorism. Revisionist states that are not satisfied with an existing international order

may not resort to war, and status quo states that are truly interested in preserv-

ing peace may well accept stalemate. Thus, the most common usage of the con-

cept of the offense-defense balance by itself does not determine the optimal strategic
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choices of asymmetric states and the equilibrium outcome as to whether terrorism

occurs or not. Therefore, offense-defense theory demands refinements to incorporate

the contemporary realities of international conflicts. Understanding the limitations

of offense-defense theory will help international politics scholarship develop better

causal explanations and analytical leverage in describing the relationship between

technological change and asymmetric conflicts.

Concluding Remarks

In this paper, I develop a game-theoretic model of increasing offensive and defensive

technology, and explore the dynamics of threats posed by revisionist states or terrorist

organizations. The equilibrium analysis shows that offense dominance in conflicts

between two asymmetric states is not associated with war. In this sense, my paper

provides an alternative framework to the formal conflict literature, highlighting the

qualitative difference in the structure of international conflicts between asymmetric

states from that of conflicts between equally matched states.

A few extensions are proposed for future research. First, the definition of the

overall offense-defense balance may seem stylized; a generalization of the concept is

needed for broader applications to conflicts associated with revisionist states. Second,

my model assumes that the surplus s that A offers to B is exogenously given, which

may not be self-enforcing. One solution that would fix this problem would be to

make B receive interest payment streams of s forever at every instant of time after

her concession; in which case B would not have an incentive to restart the game after

backing down and thus, a payment of s becomes self-enforcing. Further, because

the arbitrariness of s’s path may limit its applications, it would be interesting to

endogenize s so that A has an option of choosing the amount s(t) for every finite
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t ≥ 0. In this way, I can study the profound effects of the role of credibility and the

learning in information revelation process on the duration of stalemate and on what

terms conflict can be ended. Such analyses may guide many states’ decision making

in creating rational incentives to achieve international cooperation, even when the

offense is dominant, as well as finding ways to end stalemate.

Notes

1In attempting to explain the causes of international conflict, theorists of power transition at-

tribute shifts in the distribution of power as the important source. Several neorealists argue that the

distribution of power in the international system is the key variable. For example, Waltz (1979), one

of the founders of neorealism, defines the likelihood of war in terms of power differentials between

states and groups of states. Offense-defense theory is a variant of neorealist theory that diverges

from standard power based structural realist analyses in that the theory converts power into military

capabilities, explaining many aspects of international politics that the distribution of power does

not account for. Betts (2005, p. 357) points out that ‘Military capabilities — and political leaders’

understanding or misunderstanding of them — can exert an independent influence on decisions for

or against war. Depending on which side in a conflict has the edge, the military factors make it

easier or harder for a government to risk resorting to forces against the status quo.’

2The crucial works and developments on offense-defense theory are Jervis (1978), Lynn-Jones

(1995), Van Evera (1998), and Glaser and Kaufmann (1998).

3The term terrorism has been described variously as a tactic, a reaction to oppression, and a

crime. The United Nations defines terrorism as ‘an anxiety-inspiring method of repeated violent

action, employed by clandestine individual, group, or state actors, for idiosyncratic, criminal or

political reasons, where in contrast to assassination the direct targets of violence are not the main

targets.’

4Revisionist state is a term from Power Transition Theory within the wider field of international

relations. It is used to describe states, that unlike status quo states, see an inherent injustice in

the international system of states. Powerful and influential nations in international relations such

as the United States, Britain, France and other nations like Japan who have benefited from western
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liberalism, are likely to fall under the category of status quo states while North Korea, Iran, and other

nations dissatisfied with their place on the international spectrum are often considered Revisionist

States.

5See Mearsheimer (1983), Lieber (2000), Gortzak, Haftel and Sweeney (2005), and Nilsson (2012)

for the critics of offense-defense theory that have challenged the theory’s main predictions concerning

the frequency and the expected duration of wars on both theoretical and empirical grounds.

6Provocative military actions may include troop mobilization, accumulation of weapons, arms

proliferation, executing missile tests, launching nuclear programs, or acquiring nuclear arsenal. ‘In

virtually all international crises, we observe states using military preparations and diplomatic state-

ments’ as costly signaling strategies (Fearon, 1992, p. 144). Then, these actions may be called

signaling by explicit threats, or ‘brinkmanship.’ For a discussion of ‘brinkmanship’ arguments, see

Nalebuff (1986), Powell (1990), and Schelling (1966).

7I assume that A possesses the ability to strike first but only as a war limitation measure in order

to disarm offensive actions by an aggressor state B.

8I use male pronouns to refer A and female pronouns to refer B, for the sake of simplicity.

9Note that there is no upper or lower bound on mi(t). If I consider mi(t) as ‘physical technology,’

then it is reasonable to have a technological constraint. However, I regard mi(t) as some kind of

martial effectiveness that A and B accumulates as time goes.

10Attacks or wars are associated with fixed costs suffered by dealing with the use of arms—costs

of fighting and destruction.

11Because we observe a state attacking first suffering less in the real world situation, it might be

more realistic to assume cA < dA, i.e. it’s less costly for A to be the first to ‘attack’ than being

attacked by B at the outset of the game. However, I assume that A does not want to be too much

of an aggressor; rather it is an extreme pacifist, who would use preventive attacking only as war

limitation measure. That is, A would rather prefer being attacked by B to attacking in the early

stage of the game when the cost from technology that B can impose on A have not increased that

much with continuation.

12For each µ, there exists some t
′

µ ≡ t
′
(µ) such that µt

′

µ − dB = s. After this point, B would

strictly prefer attacking to backing down.

13I assume that −πt′µ̄ − dA ≤ −cA for A to find it in his interest to attack after t
′
(µ) for all µ.

14For all values of µ, there is one other equilibrium outcome (which does not involve a finite
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duration of stalemate) obtainable in a subgame perfect equilibrium: A plays {attack}tA for t > 0;

and B plays {backdown}0B . If B expects A to attack immediately after t = 0, she has no incentive

to deviate. Also, if A expects B to back down immediately at t = 0, he has no incentive to deviate.

This equilibrium disappears in an alternating-move version of the game. Thus, I focus on the set of

equilibria discussed in the text.

15A formal proof for this result is available upon request.

16In an extreme case where A’s value for peace increases indefinitely, π → ∞, the duration

t∗ converges to zero. Then, the prior probability that B will choose a strategy involving attack

approaches zero, and thus, the equilibrium yields optimal strategy of all types of B to back down

immediately.

17Finding Jervis (1978)’s arguments to be partial and incomplete, Fearon (1997) develops a brief

assessment of how the standard ‘offensive-advantages-cause-war’ hypothesis fares against the record

of interstate war in Europe since 1648. He claims that the historical record suggests that war

appears to have been less frequent when offensive advantages have been greater. He argues that

offense dominance tends also to increase the variance of military outcomes, making war more risky

for the attacker, and thus, greater offensive advantages might make states favor peace rather than

war and be more reluctant to resort to war.

18For discussions of other factors, such as the cumulativity of resources, nationalism, force size,

alliance behavior, regime popularity, military doctrine, etc., see Jervis (1978), Lynn-Jones (1995),

Van Evera (1998), and Glaser and Kaufmann (1998).

19The definition differs from that of ‘compound balance’ introduced in Glaser and Kaufmann

(1998, p. 58). They argue that the offense-defense balance is defined ‘as the ratio of the cost of

the forces the attacker requires to take territory to the cost of the forces the defender has deployed’

(Glaser and Kaufmann, 1998, p. 50).

20At t∗, the difference between the relative expected utility of attacking versus being attacked is

zero for the status quo state whereas the difference is positive (µt∗ − dB + cB ≥ s+ cB > 0) for the

revisionist state.
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Appendix A: The Solution Concept

The definitions and derivations in this appendix closely follow Fearon (1995). First, I

define a Bayesian Nash equilibrium for the normal form version of the conflict game,

denoted Γ. To avoid complications, I restrict attention to pure strategy equilibria.

Here, a pure strategy for A is a rule sA that specifies t ∈ R+ to {attack}, where

R+ is the set of nonnegative reals. Also, a pure strategy for B is a map sB : M →

R+ × {attack, backdown}. I write {attack}tA for the subgame strategy ‘continue up

to t, then attack’ for A, and {attack}tB for the subgame strategy ‘continue up to

t, then attack’ and {backdown}tB for ‘continue up to t, then back down’ for B. For

every t, let R(t) be a unique cumulative probability that A attacks on or before t in

some equilibrium if A follows sA. Using F , sB induces a unique pair of cumulative

distributions P (t) and Q(t), which are the probabilities that B attacks on or before t,

or backs down on or before t in some equilibrium if B follows sB. By the properties of

cumulative distribution functions, P (t) and Q(t) are increasing and have well-defined

left-hand limits for all t. Let P−(t) ≡ lims→t− P (s) and Q−(t) ≡ lims→t− Q(s). Note

that I assume R(t) to be increasing, left-continuous, and have well-defined right-hand

limits for all t.

Payoffs have been defined except for simultaneous {attack}tA and {attack}tB at t,

or {attack}tA and {backdown}tB. When A attacks and B attacks at the same instant

time, then B suffers from A’s preventive attack and A suffers from B’s attack, so
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that they each suffers costs that occur by the adversary’s action. If A attacks while

B chooses to back down at the same time t, A’s preventive attack dominates the

withdrawal of B. So I assume the following. However, these payoffs do not matter in

the sequel.

Assumption 1. If A chooses to attack at t and B chooses to attack at the same

time, they receive (−mA(t)− dA,−cB).

Assumption 2. If A chooses to attack at t and B chooses to back down at the same

time, they receive (−cA,−cB).

Given Assumptions 1 and 2, A’s expected payoff for {attack}tA, given sB, is

Uattack
A (t) ≡ P−(t) [−πt− dA] +

(
P (t)− P−(t)

)
[−πt− dA]

+Q−(t) [−s] +
(
Q(t)−Q−(t)

)
[−cA] + (1− P (t)−Q(t)) [−cA]

= P (t) [−πt− dA] +Q−(t) [−s] +
(
1− P (t)−Q−(t)

)
[−cA] .

Similarly, B’s expected payoff for {attack}tB, given sA, is

Uattack
B (t),≡ R(t) [−cB] + (1−R(t)) [µt− dB] , (A.1)

and B’s expected payoff for {backdown}tB, given sA, is

U backdown
B (t) ≡ R(t) [−cB] + (1−R(t)) [s] . (A.2)

Definition 1. {attack}t
′

A is a best reply for A given sB if

t
′ ∈ arg max

t
Uattack
A (t).

Definition 2. {attack}t
′

B and {backdown}t
′

B are best replies for B with µ given sA if,
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respectively,

t
′ ∈ arg max

t
Uattack
B (t) and Uattack

B (t
′
) ≥ max

t
U backdown
B (t),

t
′ ∈ arg max

t
U backdown
B (t) and U backdown

B (t
′
) ≥ max

t
Uattack
B (t).

Definition 3. (sA, sB) is a Bayesian Nash equilibrium for the normal form version of

Γ if under si, i = A,B, every i chooses a best reply, given sj, j 6= i, where sA induces

R(t) and {F, sB} induces {P (t), Q(t)}.

In the dynamic setting, a complete pure strategy in Γ for A is a rule sA : R+ →

R+ × {attack}, with the restriction that if sA(t
′
) = {attack}tA, then t

′ ≤ t. Also, a

complete pure strategy for B is a map sB : R+ ×M → R+ × {attack, backdown},

with the restriction that if sB(t
′
, σ) = {attack}tB or {backdown}tB, then t

′ ≤ t.

For all t
′ ≥ 0, define the continuation game Γ(t

′
) as follows: (i) payoffs are as in

Γ, beginning at t
′
; and (ii) initial beliefs for A are given by a cumulative distribution

function F (·; t′) onM . A strategy si implies a strategy for state i in every continuation

game Γ(t
′
) called si|t

′
. Further, for every t

′
, let R(t|t′) be a unique conditional

cumulative distribution over sA|t
′
, analogous toR(t). Also, using F (·; t′), sB|t

′
induces

a unique pair of cumulative distributions P (t|t′) and Q(t|t′), defined analogously to

P (t) and Q(t). Expected payoff functions for Γ(t
′
), Uattack

A (t|t′), Uattack
B (t|t′), and

U backdown
B (t|t′) are defined as before.

To rule out some optimistic off-equilibrium-path beliefs on surprises, I give Con-

dition 1. For example, if B continues unexpectedly at t, then A will think that B is

of low militancy level and maintain this optimistic belief as conflict continues. Be-

cause this would allow B with higher militancy level to continue accumulating more

offensive capability and attack before A, we need the following criterion to impose
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restrictions on how A would interpret completely unexpected behavior by B and thus,

refine the set of equilibria.

Condition 1. For all t > 0 such that P (t) +Q(t) = 1, F
(
s+dB
t

; t
)

= 0.

In other words, if B continues beyond t when it was expected to have attacked or

backed down prior to t, then A believes that B’s payoff for attacking is at least as

great as B’s payoff for backing down at time t.

Definition 4. {(sA, sB), F (·; ·)} is an equilibrium for Γ if (i) (sA, sB) induces a

Bayesian Nash equilibrium in Γ and for all t ≥ 0, (sA|t, sB|t) induces a Bayesian

Nash equilibrium in Γ(t) using F (·; t); (ii) for all t such that t is reached with positive

probability under sA and sB (i.e. R(t) < 1 and P (t) + Q(t) < 1), F (·; t) is F (·)

updated using Bayes’ Rule and si, i = A,B; and (iii) Condition 1.

Appendix B: Preliminaries and Proofs

In this appendix, I give the formal definition of a duration of stalemate, and develop

some lemmas that will build up to proving the main results.

Definition 5. τ is a duration of stalemate for Γ in some equilibrium if in this equi-

librium, τ = inf {t|Q(t) = Q(∞) and t 6= 0}.

Lemma 1. In an equilibrium of Γ, if Q(t) is atomic at t
′
, then, {attack}t

′

A is never

a best reply for A and is chosen with zero probability in equilibrium.

Proof. Suppose to the contrary that in some equilibrium A chooses {attack}t
′

A where

Q(t
′
) > Q−(t

′
). The A then receives an ex ante expected payoff of

Uattack
A (t

′
) = P (t

′
)
[
−πt′ − dA

]
+Q−(t

′
) [−s] +

(
1− P (t

′
)−Q−(t

′
)
)

[−cA]. (B.1)
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By right continuity of Q(t), the deviation {attack}t
′
+ε

A for ε > 0, yields an expected

payoff arbitrarily close to

P (t
′
)
[
−πt′ − dA

]
+Q(t

′
) [−s] +

(
1− P (t

′
)−Q(t

′
)
)

[−cA] (B.2)

as ε→ 0. Note that (B.2) is strictly greater than (B.1). Thus, {attack}t
′

A cannot be

a best reply for A and so, it will be chosen with zero probability in equilibrium.

I can now write A’s equilibrium ex ante expected payoff for {attack}tA as

Uattack
A (t) = P (t) [−πt− dA] +Q(t) [−s] + (1− P (t)−Q(t)) [−cA]. (B.3)

Recall that B’s equilibrium ex ante expected payoff for {attack}tB and {backdown}tB

are given in (A.1) and (A.2) respectively.

Lemma 2. In any equilibrium of Γ, if there exists a t
′
> t such that Q(t

′
) > Q(t),

then A will never choose {attack}tA and it must be R(t) = 0.

Proof. A’s equilibrium ex ante expected payoff function Uattack
A (t) in (B.3) increases

with Q(t) since

∂Uattack
A (t)

∂Q(t)
= −s+ cA > 0,

by the parameter restriction s < cA. Thus, it is straightforward that A will never

choose {attack}tA, and it must be R(t) = 0 for all t < t
′

such that Q(t
′
) > Q(t).

Remark 1. Suppose τ > 0 is a finite duration of stalemate in some equilibrium of

Γ. (1) By definition, for all ε > 0, B backs down with positive probability in the

interval [τ − ε, τ ]. (2) By Lemma 2 and (1), R(t) = 0 for t < τ . Thus, {attack}t>τB

yields an ex ante expected payoff of Uattack
B (t) = R(t) [−cB] + (1−R(t)) [µt− dB],

while {backdown}t<τB yields U backdown
B (t) = s.
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Lemma 3. In an equilibrium of Γ where A believes B will attack at some t with

positive probability, there must exist a finite duration τ <∞.

Proof. Suppose to the contrary that there exists an equilibrium of Γ in which contin-

uation may occur, where A believes B will attack at some t with positive probability,

and in which Q(t) is strictly increasing for all t. By Lemma 2, R(t) = 0 for all t ≥ 0

since for all t ≥ 0 there exists a t
′
> t such that Q(t

′
) > Q(t). Then, for B, {attack}tB

for any t ≥ 0 yields a payoff of Uattack
B (t) = µt− dB while {backdown}tB for any t ≥ 0

yields a payoff of U backdown
B (t) = s. Then, for each µ, there exists some t

′′ ≡ t
′′
(µ)

such that µt
′′ − dB = s and so µt − dB > s for all t > t

′′
. Also,

∂Uattack
B (t)

∂t
> 0 for all

t > t
′′
(µ) for all µ, which implies that {attack}tB is never a best response for all t for

any µ, and thus, P (t) = 0 for all t ≥ 0, contradicting that B will attack at some t

with positive probability. Therefore, it must be Q(t) = Q(t̂) for all t ≥ t̂ for some t̂

and by definition there exists a finite duration.

Proof of Proposition 1. First I show that it cannot be τ < t∗. Suppose to the

contrary that it were. Then, −πτ − dA > −cA. Then, regardless of B’s action, A will

never choose attack at t, where τ ≤ t < t∗, so that R(t) = 0 for t < t∗. Then, for B,

{attack}tB for τ ≤ t < t∗ yields an ex ante expected payoff of Uattack
B (t) = [µt− dB]

which is strictly increasing in t. This implies that it must be P (t) = P (t∗) for all

τ ≤ t < t∗. By the definition of the duration, it also must be Q(t) = Q(τ) for all

t ≥ τ . This in turn implies that Uattack
A (t) strictly decreases in t for τ ≤ t < t∗,

contradicting R(t) = 0 for t < t∗. Now I show that it cannot be τ > t∗. Suppose to

the contrary that it were. Then, −πτ − dA < −cA. Then, regardless of B’s action, A

will choose to attack before τ with positive probability, again contradicting R(t) = 0

for t < τ . Thus, it must be τ = t∗. It is straightforward that the duration of stalemate

τ is unique.
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The intuition to the proof of Proposition 1 is as follows: If a duration of stalemate

τ is such that τ > t∗, then A would prefer to attack before the duration with positive

probability, contradicting R(t) = 0 for t < τ . On the other hand, if a duration of

stalemate is smaller than t∗, then either A would have incentives not to attack at τ and

continue for some more time or B would have incentives to continue stalemate beyond

τ , in which case B’s signaling threats by continuation would not be informative enough

to A. Thus, it would make equilibrium not supported at τ . Lemma 4 characterizes

the equilibrium behavior of states.

Lemma 4. In an equilibrium of Γ with finite t∗ as the duration of stalemate, (1)

if A chooses {attack}tA, it must be the case that t ≥ t∗; (2) if B chooses {attack}tB,

it must be the case that t ≥ t∗; and (3) B will choose {attack}tB where t ≥ t∗ if

mB(t∗)− dB > s ↔ µ > s+dB
t∗

and only if mB(t∗)− dB ≥ s.

Proof. Part (1) follows immediately from Lemma 2 and Remark 1. Since R(t) = 0

for t < t∗, A never chooses to attack before t∗. Part (2): Since R(t) = 0 for t < t∗,

{attack}tB gives Uattack
B (t) = [µt− dB] and {backdown}tB gives U backdown

B (t) = s. Since

Uattack
B (t) is strictly increasing in t, B will never choose {attack}tB when t < t∗, so

part (2) follows. Part (3): Fix an equilibrium in which there exists a finite duration

t∗. B’s ex ante expected payoff for {attack}t>t
∗

B is

Uattack
B (t) = R(t) [−cB] + (1−R(t)) [µt− dB] ,

and, B’s ex ante expected payoff for {backdown}t>t
∗

B is

U backdown
B (t) = R(t) [−cB] + (1−R(t)) [s] ,

This implies that B does better to choose {attack}t≥t
∗

B if µt∗ − dB > s and only if
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µt∗ − dB ≥ s.

Lemma 4 implies that the ex ante pre-conflict probability that B will choose a

strategy involving attack is 1 − F
(
s+dB
t∗

)
, the prior probability that µt∗ − dB ≥ s.

Thus, I can write A’s ex ante expected utility for continuing up to a duration t∗ as

uA(t∗) = F

(
s+ dB
t∗

)
[−s] +

(
1− F

(
s+ dB
t∗

))
[−πt∗ − dA]

= F

(
s+ dB
t∗

)
[−s] +

(
1− F

(
s+ dB
t∗

))
[−cA] .

(B.4)

Proof of Proposition 2. Given sB in (ii), sA in (i) is an optimal strategy for A:

Note that if A plays {attack}t
∗

A , then B would want to attack an infinitesimal time

just before t∗, which in turn makes A to play attack before B, contradicting Lemma

4. For A not to deviate from his equilibrium strategy on the interval t ∈ [0, t∗], B

with µ < s+dB
t∗

needs to make A (weakly) prefer continue to attack for any t ≤ t∗.

By Remark 1 and Lemma 4, Q(t) > 0 and P (t) = 0 for t < t∗. So, A’s ex ante

expected payoff for t < t∗ is F
(
s+dB
t∗

)
[−s], which is strictly greater than (B.4). Also,

A would be indifferent between being attacked and attacking at t∗. Therefore A’s

optimal strategy is to play plays {attack}tA for t > t∗. such that R(t) = 0 if t ≤ t∗

and R(t) = 1 if t > t∗.Given sA in (i), sB (ii) is a best response strategy for B.

This follows immediately from Lemma 4. Note that since A attacks immediately

after t∗, if any B deviates from her optimal strategy, then she will receive −cB which

is strictly worse than attacking or backing down at t∗.21 Therefore, B does better

to choose {attack}tB at t∗ for µ ≥ s+dB
t∗

and to choose {backdown}tB for any t ≤ t∗

for µ < s+dB
t∗

. 22 Thus, following from Lemma 4, strategies specified in (i) and (ii)

of Proposition 2 constitute a Bayesian Nash equilibrium in Γ, given A’s belief and

opponent’s strategy. For the continuation games Γ(t
′
), t

′ ≥ 0, Bayes’ Rule implies
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that if {F, sB} ⇒ {P (t), Q(t)}, then, P (t|t′) = P (t)−P (t
′
)

1−P (t′ )−Q(t′ )
and Q(t|t′) = Q(t)−Q(t

′
)

1−Q(t′ )−P (t′ )

for t > t
′

such that P (t
′
) + Q(t

′
) < 1. Then, if {backdown}tB or {attack}tBis a best

response for B given sA, then it remains so in all continuation games Γ(t
′ ≤ t) for all t

′

such that t
′
is reached with positive probability, i.e. P (t

′
)+Q(t

′
) < 1 under sA and sB.

Thus, the strategies specified in (i) and (ii) of Proposition 2 induce a Bayesian Nash

equilibria in every continuation game Γ(t
′
) up to t∗ where P (t∗) + Q(t∗) = 1, given

beliefs and opponent’s strategy. The condition (i) of Definition 4 for an equilibrium

of the conflict game Γ is satisfied. For t ≤ t∗, provided that P (t)+Q(t) < 1, A’s belief

on F (·; t) is F (·) updated using Bayes’ Rule. Since, the payoff structure leaves B to

choose any time to back down on or before t∗, A’s belief on the probability that B will

not back down conditional on having not backed down would be Pr
(
µ ≥ s+dB

t∗
|t
)

=

1 − F
(
s+dB
t∗

)
. Since A’s beliefs are consistent with the strategy profile along the

equilibrium path using Bayesian updating for all t such that t is reached with positive

probability under sA and sB, the belief system given the strategy profile, specified

in (iii) of Proposition 2 satisfy (ii) of Definition 4 for an equilibrium of the conflict

game Γ. Beliefs off the equilibrium path given in (iv) is consistent with Condition

1. Thus, the specified set of equilibrium strategies and the belief system along with

the off-the-equilibrium path beliefs constitute the set of equilibria in the incomplete

information conflict game.
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